NT	
Name:	
manne.	

Determining Points on a Quadratic (x^2) Equation

When you are plugging **input values** (*x*) into a quadratic equation, it is vital that you follow the **order of operations** (parentheses, exponent, multiplication/division, addition/subtraction) as you solve. If you solve parts out of order, the **output values** (*y*) will be incorrect.

The *x*-values that you choose to plug in are **input values** and are part of the **domain**. The *y*-values that result are **output values** and are part of the **range**.

Equation:	Determine points and write them	as an XY Table		and as a list of points.	Critical Thinking Questions:
Example $f(x) = 6x^{2} - 3x + 10$ is the same as: $y = 6x^{2} - 3x + 10$ $lfx = -5 \rightarrow y = 6(-5)^{2} - 3(-5) + 10$ $y = 6(25) + 15 + 10$ $y = 150 + 15 + 10 = 175$ $lfx = 4 \rightarrow y = 6(4)^{2} - 3(4) + 10$ $y = 96 - 12 + 10 = 10$ $lfx = 0 \rightarrow y = 6(0)^{2} - 3(0) + 10$ $y = 0 - 0 + 10 = 10$ $lfx = -3 \rightarrow y = 6(-3)^{2} - 3(-3) + 10$ $y = 54 + 9 + 10 = 173$ $lfx = 1 \rightarrow y = 6(1)^{2} - 3(1) + 10$ $y = 6(-3) + 10$ $y = 6(-3) - 3 + 10$	I can pick any x that I want, so I'm going to pick numbers close to zero to make squaring easier. If $x = -5$, then $y = 175$. If $x = 4$, then $y = 94$. If $x = 0$, then $y = 10$. If $x = -3$, then $y = 73$. If $x = 1$, then $y = 13$	Domain X Write x's from lowest to highest -5 -3 0 1 4	Range y 175 73 10 13 94	Write as (x, y) points in order from least x to greatest x. {(-5, 175), (-3, 73), (0, 10), (1, 13), (4, 94)}	Limits on the Domain Is there anything that x CANNOT ever be? If yes, what? I can plug in any x be able to solve it. There are no limits to this domain. Limits on the Range Is there anything that y CANNOT ever be? The y-values get bigger in both directions that x grows. It turns around between x= -3 and x= 1, close to the zero. I don't know what the lowest y value will be, because it might be a decimal, but the lowest output I can find is y= 10 (from the input x= 0), because at x= -1, y= 19 and at x= 1, y= 13.
Example $p(x) = -(x + 8)^{2} + 1$ $y = -(x + 8)^{2} + 1$ $lfx = -10 \rightarrow y = -((-10) + 8)^{2} + 1$ $y = -(-2)^{2} + 1 = -(4) + 1 = -3$ $lfx = 1 \rightarrow y = -((1) + 8)^{2} + 1$ $y = -(9)^{2} + 1 = -(81) + 1 = -80$ $lfx = 0 \rightarrow y = -((0) + 8)^{2} + 1$ $y = -(8)^{2} + 1 = -(64) + 1 = -63$ $lfx = -7 \rightarrow y = -((-7) + 8)^{2} + 1$ $y = -(1)^{2} + 1 = -(1) + 1 = 0$ $lfx = 2 \rightarrow y = -((2) + 8)^{2} + 1$ $y = -(10)^{2} + 1 = -(100) + 1 = -99$	<i>I'm going to pick negative</i> numbers that, when I add 8, will make small numbers to make squaring easier. I'll also use two small positive numbers and 0. If $x = -10$, then $y = -3$. If $x = 1$, then $y = -3$. If $x = 1$, then $y = -3$. If $x = 0$, then $y = -63$ If $x = -7$, then $y = 0$. If $x = 2$, then $y = -99$.	Domain x -10 -7 0 1 2	Range y -3 0 -63 -80 -99	{(-10, -3), (-7, 0), (0, -63), (1, -80), (2, -99)}	Limits on the Domain Is there anything that x CANNOT ever be? If yes, what? I can plug in any x be able to solve it. There are no limits to this domain. Limits on the Range Is there anything that y CANNOT ever be? Y gets smaller both when x grows negatively and positively, and it seems to turn around near x= -7. On my points, (-7,0) is as high as y gets. If I plug in x= -8, then y=1, but for x= -9, y= 0 again, so I think the turning point is at (-8, 1). I don't think the range can get any higher than y= 1.

1. $f(x) = -2x^2 - 10x + 5$	Input Output If x =, then y = . If x =, then y = .	Domain Range X Y	{(,),(,), (,),(,), (,)}	Limits on the Domain Is there anything that <i>x</i> CANNOT ever be? If yes, what? Limits on the Range Is there anything that <i>y</i> CANNOT ever be?
2. $w(x) = 3(x - 7)(x + 4)$	Input Output If x =, then y = . If x =, then y = .	Domain Range X Y	{(,),(,), (,),(,), (,)}	Limits on the Domain Is there anything that x CANNOT ever be? If yes, what? Limits on the Range Is there anything that y CANNOT ever be?
3. $t(x) = 4x^2 - 9x - 2$	Input Output If x =, then y = .	Domain Range x y	{(,),(,), (,),(,), (,)}	Limits on the Domain Is there anything that x CANNOT ever be? If yes, what? Limits on the Range Is there anything that y CANNOT ever be?

4. $b(x) = 2(x - 7)^2 + 5$	Input Output If x =, then y = . If x =, then y = .	Domain Range X Y	{(,),(,), (,),(,), (,)}	Limits on the Domain Is there anything that x CANNOT ever be? If yes, what? Limits on the Range Is there anything that y CANNOT ever be?
5. $k(x) = -9(x - 2)^2 + 8$	Input Output If x =, then y = .	Domain Range x y	{(,),(,), (,),(,), (,)}	Limits on the Domain Is there anything that x CANNOT ever be? If yes, what? Limits on the Range Is there anything that y CANNOT ever be?
6. $c(x) = -4x^2 - 2x - 9$	Input Output If x =, then y = .	Domain Range X y	{(,),(,), (,),(,), (,)}	Limits on the Domain Is there anything that x CANNOT ever be? If yes, what? Limits on the Range Is there anything that y CANNOT ever be?

7. $a(x) = 2(x-6)(x-9)$	Input Output If x =, then y = . If x =, then y = .	Domain Range X Y	{(,),(,), (,),(,), (,)}	Limits on the Domain Is there anything that <i>x</i> CANNOT ever be? If yes, what? Limits on the Range Is there anything that <i>y</i> CANNOT ever be?
8. $q(x) = -(x + 11)^2 - 4$	Input Output If x =, then y = . If x =, then y = .	Domain Range X Y	{(,),(,), (,),(,), (,)}	Limits on the Domain Is there anything that x CANNOT ever be? If yes, what? Limits on the Range Is there anything that y CANNOT ever be?
9. $h(x) = 9(x + 1)(x + 7)$	Input Output If x =, then y = .	Domain Range X y	{(,),(,), (,),(,), (,)}	Limits on the Domain Is there anything that x CANNOT ever be? If yes, what?Limits on the Range Is there anything that y CANNOT ever be?