Name: \qquad
Graphing Functions with Limited Domains
Today, we are going to graph pieces of a function by using equations with limited domains, meaning that they reach a point where the graph stops (on one or both ends) because x stops. To do this, we have to understand what the domain tells us, in terms of x and of how the point will look on the graph.

When our domain (x) is between two limits, the graph will have an endpoint (the graph will stop) on both sides.

- For our equation, we will plug in both of these x-values to find our two endpoints.
- If the equation is not a line ($y=m x+b$, for example), then we also plug in several numbers in between to find the correct shape of the graph.
- The endpoints that you find will either be an open point (${ }^{\circ}$) or a closed point (\bullet), depending on whether or not the domain is "equal to" the limit value.
- Open points (\circ) happen when the domain is less than/greater than, but not equal to the limit (< or >).
- Closed points (\bullet) happen when the domain less than/greater than or equal to the limit (\leq or \geq)

For each domain below, identify the lower limit, upper limit, and whether each point will be open or closed.

Domain:	Example $-7 \leq x \leq 8$	Example $5<x<6$	Example $2 \leq x<4$	Example $-3<x \leq 1$
Lower Limit:	$x=-7$	$x=5$	$x=2$	$x=-3$
Open or Closed:	$-7 \leq$ is CLOSED \bullet	$5<$ is OPEN \circ	$2 \leq$ is CLOSED \bullet	$-3<$ is OPEN \circ
Upper Limit:	$x=8$	$x=6$	$x=4$	$x=1$
Open or Closed:	≤ 8 is CLOSED \bullet	<6 is OPEN \circ	<4 is OPEN \circ	≤ 1 is CLOSED \bullet

Domain:	$1.2 \leq x<8$	$2 .-3 \leq x \leq-1$	3. $-6<x \leq 0$	4. $-8<x<1$
Lower Limit:				
Open or Closed:				
Upper Limit:				
Open or Closed:				

When our domain (x) has only one limits, the graph will only have an endpoint (the graph will stop) on one side.

- For our equation, we will plug in this x-values to find our only endpoint.
- Since we only have one point, we must pick another x-value(that does not go past the limit) to plug in.
- If the equation is not a line $\left(y=m x+b\right.$, for example), then we will need to plug in several x^{\prime} s to find the correct shape of the graph.
- When x is greater than the domain limit $(x>$ or $x \geq$), then we have a lower limit (because x is always more than that number), and the graph will continue positively forever (goes right until $+\infty$).
- When \boldsymbol{x} is less than the domain limit ($x<$ or $x \leq$), then we have an upper limit (because x is always less than that number), and the graph will continue negatively forever (goes left until $-\infty$).

Domain:	Example $x \geq-4$	Example $x>6$	Example $x \leq-7$	Example $x<-5$
Lower Limit:	$x=-4$ (x is bigger than -4)	$x=6$ (x is bigger than 6)	No lower limit, because x gets smaller forever! $x=-\infty$	No lower limit, because x gets smaller forever! $x=-\infty$
Open or Closed:	≥-4 is CLOSED \bullet	>6 is OPEN \circ		
Upper Limit:	No upper limit, because x gets bigger forever! $x=+\infty$	No upper limit, because x gets bigger forever! $x=+\infty$	$x=-7$ (x is smaller than -7$)$	$x=-5$ (x is smaller than -5)
Open or Closed:			≤-7 is CLOSED \bullet	<-5 is OPEN \circ

Domain:	$5 . x<0$	$6 . x \geq-9$	7. $x>8$	$8 . x \leq 4$
Lower Limit:				
Open or Closed:				
Upper Limit:				
Open or Closed:				

Now that we are able to understand and properly graph our domain limits as points, we can start practicing finding the endpoints and graphing pieces of an equation, limited by a domain.

For each equation, plug in the x-values of the endpoints, determine if they will be open (\circ) or closed (\bullet), then fill in the $x-y$ table. If necessary, plug in other x-values to determine the shape of the graph. Then, graph each equation piece on the given coordinate plane (graph problems 9 through 11 together with the examples).

