Name: __

Graphing Functions with Limited Domains

Today, we are going to graph pieces of a function by using equations with limited domains, meaning that they reach a point where the graph stops (on one or both ends) because *x* stops. To do this, we have to understand what the domain tells us, in terms of *x* and of how the point will look on the graph.

<u>When our domain (x) is between two limits</u>, the graph will have an **endpoint** (the graph will stop) on both sides.

- For our equation, we will plug in both of these *x*-values to find our two endpoints.
- If the equation is not a line (y = mx + b), for example), then we also plug in several numbers in between to find the correct shape of the graph.
- The endpoints that you find will either be an open point (•) or a closed point (•), depending on whether or not the domain is "equal to" the limit value.
- Open points (•) happen when the domain is less than/greater than, but **not equal to** the limit (< or >).
- Closed points (•) happen when the domain less than/greater than **or equal to** the limit (\leq or \geq)

For each domain below, identify the lower limit, upper limit, and whether each point will be open or closed.

Domain:	Example	Example	Example	Example
	$-7 \le x \le 8$	5 < x < 6	$2 \le x < 4$	$-3 < x \leq 1$
Lower Limit:	x = -7	x = 5	x = 2	x = -3
Open or Closed:	$-7 \leq \text{is CLOSED} \bullet$	$5 < \text{ is OPEN } \circ$	$2 \leq \text{is CLOSED} \bullet$	$-3 < \text{ is OPEN } \circ$
Upper Limit:	x = 8	x = 6	x = 4	x = 1
Open or Closed:	\leq 8 is CLOSED •	< 6 is OPEN •	< 4 is OPEN •	\leq 1 is CLOSED •

Domain:	1. $2 \le x < 8$	2. $-3 \le x \le -1$	3. $-6 < x \le 0$	4. −8 < <i>x</i> < 1
Lower Limit:				
Open or Closed:				
Upper Limit:				
Open or Closed:				

<u>When our domain (*x*) has only one limits</u>, the graph will only have an **endpoint** (the graph will stop) on one side.

- For our equation, we will plug in this *x*-values to find our only endpoint.
- Since we only have one point, we must pick another *x*-value(that does not go past the limit) to plug in.
- If the equation is not a line (y = mx + b, for example), then we will need to plug in several x's to find the correct shape of the graph.
- When x is **greater than** the domain limit ($x > \text{ or } x \ge$), then we have a lower limit (because x is always more than that number), and the graph will continue **positively forever** (goes right until $+\infty$).
- When **x** is less than the domain limit ($x < \text{or } x \leq$), then we have an upper limit (because *x* is always less than that number), and the graph will continue **negatively forever** (goes left until $-\infty$).

Domain:	Example	Example	Example	Example
	$x \ge -4$	x > 6	$x \leq -7$	x < -5
Lower Limit:	x = -4 (x is bigger than -4)	x = 6 (x is bigger than 6)	No lower limit, because x gets smaller forever! $x = -\infty$	No lower limit, because x gets smaller forever! $x = -\infty$
Open or Closed:	≥ -4 is CLOSED •	> 6 is OPEN •		
Upper Limit:	No upper limit, because x gets bigger forever! $x = +\infty$	No upper limit, because x gets bigger forever! $x = +\infty$	x = -7 (x is smaller than -7)	x = -5 (x is smaller than -5)
Open or Closed:			≤ -7 is CLOSED •	< -5 is OPEN \circ

Domain:	5. $x < 0$	6. $x \ge -9$	7. <i>x</i> > 8	8. $x \le 4$
Lower Limit:				
Open or Closed:				
Upper Limit:				
Open or Closed:				

Now that we are able to understand and properly graph our domain limits as points, we can start practicing finding the endpoints and graphing pieces of an equation, limited by a domain.

For each equation, plug in the *x*-values of the endpoints, determine if they will be open (\circ) or closed (\bullet), then fill in the *x*-*y* table. If necessary, plug in other *x*-values to determine the shape of the graph. Then, graph each equation piece on the given coordinate plane (graph problems 9 through 11 together with the examples).

