\qquad
Using the Middle x to Graph a Quadratic
Every quadratic graph needs three parts to be complete:

1. The vertex
2. The x-intercept(s)
3. The y-intercept

The most important of these - when it comes to graphing, at least - is the vertex (the turning point). The vertex x value is the middle x-value on the graph. You need points on both sides (preferably the intercepts) in order to complete the graph. Graphing a quadratic without knowing the vertex requires time-consuming guesswork, because you have to keep plugging in x^{\prime} s until you luck into it.

Depending on how the quadratic equation is written, though, you will be able to determine the vertex x using one of the three traditional methods:

Standard Form	Vertex Form	Factored Form
$x(x)=a x^{2}+b x+c$	$f(x)=a(x-h)^{2}+k$	$f(x)=a\left(x-r_{1}\right)\left(x-r_{2}\right)$
$x=\frac{-b}{2 a}$	$x=+h$	$x=\frac{\left(+r_{1}\right)+\left(+r_{2}\right)}{2}$
(take the opposite sign of the b, and divide it by the result of 2 times a)	(take the opposite sign of the h)	(take the opposite sign of both r 's, add them up, then divide by 2)

For each equation below, determine the middle x-value. You will be graphing each quadratic on the back.

