Name: ___

Isolating *x* to Create an Inverse

The **inverse** (**or "opposite**") of *x* is *y*. To create the inverse of an *xy* equation is a equation you must first solve for *x*, then switch the letter *x* with the letter *y* and vice-a-versa. To isolate the variable, we will still use the order of operations backwards – the only difference is that our answer will be an equation (not a number).

When you have the equation written as x = something, Change the letter x to the letter y & change y to x.

Today, we will be isolating *x* so that we can create **inverses**.

Step 1: Do the opposite operation to any number adding or subtracting to *x*.

(You will not be able to combine it with *y*, so just write the number behind the *y*)

Step 2: Do the opposite operation to any number multiplying or dividing with *x*.

Whatever you multiply/divide is done to EVERY term.

If there is an exponent: Step 3: Square root both sides to cancel the exponent (skip this step if there's no exponent).

Step 4: Switch the sides of the equation, so *x* is on the left.

Step 5: Switch the letter *x* with the letter *y*

And now you have an inverse equation.

Evample	$1 - 2\pi - 6$	2 n - 2n + 12
Example $y = -10x - 50$	1. $y = 2x - 6$	2. $y = -3x + 12$
y = -10x - 30		
Add 50 to both sides		
y = -10x - 50		
y = -10x - 30 +50 +50		
$\frac{150}{y+50} = -10x$		
y + 50 - 10x		
Divide ALL PARTS of both sides by -10		
y = 50 - 10x		
$\frac{y}{-10} + \frac{50}{-10} = \frac{-10x}{-10}$		
Simplify each fraction		
	3. $y = -5x + 10$	4. $y = 7x + 14$
(For the y fraction, move the negative		
to the front, and put a 1 next to y so		
there's a number on top and bottom)		
1		
$-\frac{1y}{10} - 5 = x$		
10		
Write the variable fraction as a		
fraction in front of the variable.		
1		
$-\frac{1}{10}y - 5 = x$		
Switch the sides of the equation		
Switch the sides of the equation $x = -\frac{1}{10}y - 5$	5. $y = 4x + 28$	6. $y = -8x + 8$
$x = -\frac{10}{10}y - 5$	5. $y = 4x + 28$	6. $y = -8x + 8$
And NOW for the INVERSE		
Switch the x and the y:		
$\underline{x} = -\frac{1}{10}\underline{y} - 5$		
$y = -\frac{1}{10}x - 5$		
$y = -\frac{1}{10}x - 5$		
10		

Now, we'll create quadratic inverses. The steps are the same, only now you can't skip step 3. **Remember:** to remove the 2 from x^{2} , you must use a $\pm \sqrt{}$ on both sides.

Remember: to remove the 2 from x^{2}	, you must use a $\pm $ on both sides.	
Example	7. $y = 3x^2$, you must use a $\pm \sqrt{y}$ on both sides.	8. $y = 4x^2$
$y = 5x^2$		
y = 3x		
There's nothing to add or subtract, so		
start with step 2:		
Start With Stop 21		
Divide ALL PARTS of both sides by -10		
$y = 5x^2$		
y = 3x		
$\frac{y}{5} = \frac{5x^2}{5}$		
5 5		
Simplify each fraction		
(For the y fraction, move the negative		
to the front, and put a 1 next to y so		
there's a number on top and bottom)		
	9. $y = 2x^2$	10. $y = 8x^2$
117	y - 2x	10. $y = 0x$
$\frac{1y}{5} = x^2$		
5		
Write the variable fraction as a		
fraction in front of the variable.		
$\frac{1}{5}y = x^2$		
$\frac{1}{5}y - x$		
5		
Square root both sides (cancel it on		
Square root both sides (cancel it on		
the x^2 side)		
$\pm \sqrt{\frac{1}{5}y} = \pm \sqrt{x^2}$		
1 1 1 1 1 1 1 1 1 1		
$\pm \frac{1}{5}y = \pm \sqrt{x^2}$		
$\sqrt{\sqrt{2}}$		
$\pm \sqrt{\frac{1}{5}y} = x$		
$\pm \overline{y} = x$		
•		
Switch the sides of the equation	11. $y = 7x^2$	12. $y = 5x^2$
	11. $y = 7x$	12. $y = 5x$
1		
$x = \pm \left \frac{1}{5} y \right $		
$\sqrt{2}$		
And NOW for the INVERSE		
Switch the x and the y:		
1		
$x = \pm \left \frac{1}{r} \right y$		
$\underline{x} = \pm \sqrt{5} \underline{y}$		
N		
1		
$y = \pm \frac{1}{5}x$		
N		
$y = \pm \sqrt{\frac{5}{5}x}$		
$\sqrt{5}$		