\qquad
Isolating x to Create an Inverse
The inverse (or "opposite") of x is y. To create the inverse of an $x y$ equation is a equation you must first solve for x, then switch the letter x with the letter y and vice-a-versa. To isolate the variable, we will still use the order of operations backwards - the only difference is that our answer will be an equation (not a number).

When you have the equation written as $x=$ something,
Change the letter x to the letter $y \&$ change y to x.
Today, we will be isolating x so that we can create inverses.
Step 1: Do the opposite operation to any number adding or subtracting to x.
(You will not be able to combine it with y, so just write the number behind the y)
Step 2: Do the opposite operation to any number multiplying or dividing with x.
Whatever you multiply/divide is done to EVERY term.
If there is an exponent: Step 3: Square root both sides to cancel the exponent (skip this step if there's no exponent).
Step 4: Switch the sides of the equation, so x is on the left.
Step 5: Switch the letter x with the letter y
And now you have an inverse equation.

Example $y=-10 x-50$ Add 50 to both sides $\begin{gathered} y=-10 x-50 \\ \frac{+50}{y+50}=-\frac{+50}{10 x} \end{gathered}$ Divide ALL PARTS of both sides by -10 $\frac{y}{-10}+\frac{50}{-10}=\frac{-10 x}{-10}$	1. $y=2 x-6$	2. $y=-3 x+12$
Divide ALL PARTS of both sides by -10 $\frac{y}{-10}+\frac{50}{-10}=\frac{-10 x}{-10}$ Simplify each fraction		
(For the y fraction, move the negative to the front, and put a 1 next to y so there's a number on top and bottom) $-\frac{1 y}{10}-5=x$	3. $y=-5 x+10$	4. $y=7 x+14$
Write the variable fraction as a fraction in front of the variable. $-\frac{1}{10} y-5=x$ Switch the sides of the equation $x=-\frac{1}{10} y-5$		
	5. $y=4 x+28$	6. $y=-8 x+8$
And NOW for the INVERSE... Switch the x and the y : $\begin{aligned} & x=-\frac{1}{10} y-5 \\ & y=-\frac{1}{10} x-5 \end{aligned}$		
$y=-\frac{1}{10} x-5$		

Now, we'll create quadratic inverses. The steps are the same, only now you can't skip step 3.
Remember: to remove the ${ }^{2}$ from x^{2}, you must use a $\pm \sqrt{ }$ on both sides.

Example $y=5 x^{2}$
There's nothing to add or subtract, so
start with step 2: start with step 2:

Divide ALL PARTS of both sides by -10

$$
y=5 x^{2}
$$

$$
\frac{y}{5}=\frac{5 x^{2}}{5}
$$

Simplify each fraction
(For the y fraction, move the negative to the front, and put a 1 next to y so there's a number on top and bottom)

$$
\frac{1 y}{5}=x^{2}
$$

Write the variable fraction as a fraction in front of the variable.

$$
\frac{1}{5} y=x^{2}
$$

Square root both sides (cancel it on

$$
\begin{gathered}
\text { the } x^{2} \text { side) } \\
\pm \sqrt{\frac{1}{5} y}= \pm \sqrt{x^{2}} \\
\pm \sqrt{\frac{1}{5} y}=x
\end{gathered}
$$

Switch the sides of the equation

$$
x= \pm \sqrt{\frac{1}{5} y}
$$

And NOW for the INVERSE...

Switch the x and the y :

$$
\begin{aligned}
& x= \pm \sqrt{\frac{1}{5} y} \\
& y= \pm \sqrt{\frac{1}{5} x}
\end{aligned}
$$

$$
y= \pm \sqrt{\frac{1}{5} x}
$$

7. $y=3 x^{2}$

9. $y=2 x^{2}$
10. $y=8 x^{2}$

