Name: _____

Geometric Probability

Up to this point, we have determined the probability of events, based solely on lists of information. Geometric probability is the probability of choosing a point at random from a specific area of space. Basically, it works like this:

$$Geomtric \ Probability = \frac{(Area \ of \ shape \ that \ I) \ WANT}{(Area \ of \ outer \ shape, which \ is \ the) \ TOTAL}$$

First, we are going to practice determining area, as we will need that to determine probability.

EXAMPLE: What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

	Sample Space	9 1	9 2	The rest of the outer shape (the big rectangle)
$\begin{array}{c} 20 \\ \hline 9 \\ \hline \end{array}$	Amount (Area)	bh = (9)(1) = 9	bh = (9)(2) = 18	total - (rect's) = 160 - (9 + 18) = 133
	Sample Size (Total) 20 8	bh = (20)(8) = 160	<i>← same</i> = 160	<i>← same</i> = 160
	Probability	$\frac{9}{160}$	$\frac{18}{160} = \frac{9}{80}$	$\frac{133}{160}$
$P(Rectangle1 \text{ or } Rectangle2) = \boxed{\frac{27}{160}} P(NOT \text{ Rectangle1 or } Rectangle2) = \boxed{\frac{133}{160}}$				

EXAMPLE: What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

16	Sample Space	$(\underset{to be the same}{^{must be 11}})11^{2}$	The rest of the outer shape (the big triangle)
	Amount (Area)	bh = (11)(2) = 22	total - rectangle = 176 - (22) = 154
Z2 Tick marks mean "the same." So, each of these pieces have to be the same. &	Sample Size (Total)	$\frac{bh}{2} = \frac{(16)(22)}{2} = 176$	\leftarrow same = 176
11 + 11 = 22	Probability	$\frac{22}{176} = \frac{11}{88} = \frac{1}{8}$	$\frac{154}{176} = \frac{7}{8}$
	P(Rectangle)	$=$ $\frac{1}{8}$ $P(NOT Rectangle) = \frac{7}{8}$	

1. What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

	Sample Space	<u> </u>	The rest of the total figure
	Amount (Area)		
3 7	Sample Size		
8	Probability		

2. What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

3. What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

28	Sample Space		
	Amount (Area)		
	Sample Size		
$\begin{array}{c c} \hline \\ 24 \\ \hline \\ 36 \end{array}$	Probability		

4. What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement? (Use the area in terms of pi.)

r = 3	Sample Space	r=3	r=3	
	Amount (Area)	$\pi r^2 =$	$\pi r^2 =$	
	Sample Size			
r=3	Probability			

5. What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

6. What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

Geometric Probability Answers

1. $\frac{3}{28}$	2. $\frac{6}{115}$	3. $\frac{1}{6}$
4. $\frac{2}{25}$	5. $\frac{7}{24}$	6. $\frac{2}{5}$