\qquad

Geometric Probability

Up to this point, we have determined the probability of events, based solely on lists of information. Geometric probability is the probability of choosing a point at random from a specific area of space. Basically, it works like this:

$$
\text { Geomtric Probabilty }=\frac{(\text { Area of shape that I) WANT }}{(\text { Area of outer shape, which is the }) \text { TOTAL }}
$$

First, we are going to practice determining area, as we will need that to determine probability.
EXAMPLE: What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

20	8	Sample Space			The rest of the outer shape (the big rectangle)
					$\text { total }-(\text { rect's })$
		Amount (Area)	$b h=(9)(1)=9$	$b h=(9)(2)=18$	$\begin{gathered} =160-(9+18) \\ =133 \end{gathered}$
$2 \quad 9$		Sample Size (Total) \square	$\begin{aligned} b h & =(20)(8) \\ & =160 \end{aligned}$	\leftarrow same $=160$	\leftarrow same $=160$
		Probability	$\frac{9}{160}$	$\frac{18}{160}=\frac{9}{80}$	$\frac{133}{160}$

$P($ Rectangle 1 or Rectangle 2$)=\frac{27}{160} \quad P($ NOT Rectangle 1 or Rectangle 2$)=\frac{133}{160}$
EXAMPLE: What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

16	Sample Space		The rest of the outer shape (the big triangle)
	Amount (Area)	$b h=(11)(2)=22$	$\begin{gathered} \text { total }- \text { rectangle } \\ =176-(22)=154 \end{gathered}$
22 Tick marks mean "the same." So, each of these pieces have	Sample Size (Total) 16	$\frac{b h}{2}=\frac{(16)(22)}{2}=176$	\leftarrow same $=176$
$11+11=22$	Probability	$\frac{22}{176}=\frac{11}{88}=\frac{1}{8}$	$\frac{154}{176}=\frac{7}{8}$
$P(\text { Rectangle })=\frac{1}{8} \quad P(N O$			

1. What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

Sample Space	$\square \mathbf{2}$	The rest of the total figure
Amount (Area)		
Sample Size		
\square		
Probability		

2. What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

23	Sample Space			
$\stackrel{4}{ } 3^{10}$	Amount (Area)			
	Sample Size			
	Probability			

3. What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

4. What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement? (Use the area in terms of pi.)

| Sample Space | $\mathbf{r}=\mathbf{3}$ | $\overbrace{}^{\mathbf{r}=\mathbf{3}}$ | |
| :--- | :--- | :--- | :--- | :--- |
| Amount (Area) | $\pi r^{2}=$ | $\pi r^{2}=$ | |
| Sample Size | | | |
| Probability | | | |

5. What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

6. What is the probability that a randomly selected point will be in the shaded part(s)? What is the probability of the complement?

Geometric Probability Answers

1. $\frac{3}{28}$	2. $\frac{6}{115}$	3. $\frac{1}{6}$
4. $\frac{2}{25}$	5. $\frac{7}{24}$	6. $\frac{2}{5}$

