\qquad
Probability Using Two-way Frequency Tables
A two-way frequency table is a way of representing data that fits into multiple categories. Any probability problem that has more than one overlapping category can be re-written as a two-way frequency table.

Example:
"If there are 8 junior baseball players, 4 junior soccer players, 7 senior baseball players, 5 senior track \& field athletes, and 6 senior soccer players..."

To set up my table, I start with my two categories (which are called "variables"): their grade level and their sport, (including a row and a column to write in the totals). Then, I fill in the information that I know.

$\begin{aligned} & \pm \\ & \vdots \\ & \text { N } \end{aligned}$	Grade				$\begin{aligned} & \text { 言 } \\ & \rightarrow \quad \stackrel{2}{n} \\ & \hline \end{aligned}$	Grade			
		Junior	Senior	TOTAL			Junior	Senior	TOTAL
	Baseball					Baseball	$\begin{gathered} \hline \text { JUNIOR } \\ \text { BASEBALL } \end{gathered}$	$\begin{gathered} \text { SENIOR } \\ \text { BASEBALL } \end{gathered}$	
	Soccer					Soccer	JUNIOR SOCCER	SENIOR SOCCER	
	Track \& Field					Track \& Field	JUNIOR TRACK \& FIELD	SENIOR TRACK \& FIELD	
	TOTAL					TOTAL			

Grade			
Junior Senior TOTAL Baseball 8 7 4 6 15 Baseball 0 50 12 Junior 18 Senior 5 TOTAL			

So, according to the table, the probability of randomly selecting a junior baseball player would be:

$$
P(\text { junior baseball player })=\frac{8 \mathrm{Jr} \mathrm{BB}}{30 \text { Total }}=\frac{4}{15}
$$

If I wanted the probability that he was a junior OR a baseball player, I would use count up those categories.

	Junior	Senior	TOTAL
.	Baseball	8	7
	4	6	15 Baseball
	0	5	10 Soccer
	12 Junior	18 Senior	5 Track \& Field

Acceptable outcomes:
8 Jr. baseball,
7 Sr. baseball
4 Jr. Soccer
\& 0 Jr. Track \& Field
= 19 Total

I could also have done
15 baseball +12 junior -8 both $=27-8=19$

I could also find the probability of randomly selecting a baseball player given that he is a junior ("given that" means he has to be a junior). For this probability, I would ignore all options that are not juniors:

$$
P(\text { Baseball } \mid \text { Junior })=\frac{8 B B}{12 J r}=\frac{2}{3}
$$

EXAMPLE				
Color				
		Black	Blue	TOTAL
	Shirts	12	8	20
	Jackets	3	2	5
	Pants	9	6	15
	TOTAL	24	16	40

a. Name the two variables displayed in the table. Color \& Clothing
b. If an item is selected at random, what is the probability that it is a jacket?
$P($ blue jacket $)=\frac{\text { total jackets }}{\text { overall total }}=\frac{5}{40}=\frac{1}{8}$
c. What is the probability that a randomly selected item is black or a shirt?

The items that meet the requirements are:
12 black shirts, 3 black jackets, 9 black pants,
and 8 blue shirts $=12+3+9+8=32$

$$
P(\text { black or shirt })=\frac{32}{40}=\frac{4}{5}
$$

d. What is the probability that a randomly selected item is a pair of pants given that the item is blue?

$$
P(\text { pants } \mid \text { blue })=\frac{\text { pants in blue category }}{\text { blue total }}=\frac{6}{16}=\frac{3}{8}
$$

	Employment			
$\begin{aligned} & \dot{む} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$		Has a job	Does not have a job	TOTAL
	Male	27	36	63
	Female	28	24	52
	TOTAL	55	60	115

a. Name the two variables displayed in the table.
b. If a person is selected at random, what is the probability that he or she has a job?
c. What is the probability that a randomly selected person is male or has a job?
d. What is the probability that a randomly selected person is female given that the person has a job?

EXAMPLE

	Grade					
		$9^{\text {th }}$	$10^{\text {th }}$	$11^{\text {th }}$	$12^{\text {th }}$	TOTAL
	Is in a club	105	125	147	101	478
	Is not in a club	78	92	75	122	367
	TOTAL	183	217	222	223	845

a. Name the two variables displayed in the table.

Grade \& Club Participation
b. If a student is selected at random, what is the probability that he or she will be in a club?

$$
P(\text { in a club })=\frac{\text { total in clubs }}{\text { overall total }}=\frac{478}{845}
$$

c. What is the probability that a randomly selected student is in a club or in $11^{\text {th }}$ grade?

The students that meet the requirements are:
$1059^{\text {th }}$ in clubs, 125 10 th in clubs, $^{\text {th }} 1471^{\text {th }}$ in clubs, $10112^{\text {th }}$ in clubs and $7511^{\text {th }}$ not in clubs

$$
\begin{gathered}
=105+125+147+101+75=553 \\
P(\text { in clubs or } 11 \text { th })=\frac{553}{845}
\end{gathered}
$$

d. What is the probability that a randomly selected student is in a club given that he or she is in $10^{\text {th }}$?

$$
P(\text { in club } \mid 10 \text { th })=\frac{\text { in club in } 10 \text { th }}{10 \text { th total }}=\frac{125}{217}
$$

2.

	Yellow	Pink	Silver	TOTAL
至	Post-it	58	17	0
Paper Clip	7	25	78	110
TOTAL	65	42	78	185

a. Name the two variables displayed in the table.
b. If an item is selected at random, what is the probability that it is a paper clip?
c. What is the probability that a randomly selected item is pink or a post-it?
d. What is the probability that a randomly selected item is silver given that it's a paper clip?

3. Grade							4.	Sports Participation					
		$9^{\text {th }}$	$10^{\text {th }}$	$11^{\text {th }}$	$12^{\text {th }}$	TOTAL			Tennis	Soccer		Not in Sports	TOTAL
	Male	204	179	165	202	750		Is in a club	145	106		138	389
	Female	170	246	143	131	690		Is not in a club	123	164		108	395
	TOTAL	374	425	308	333	1440		TOTAL	268	270		246	784
a. Name the two variables displayed in the table.							a. Name the two variables displayed in the table.						
b. If a student is selected at random, what is the probability that he or she will be in $9^{\text {th }}$ grade?							b. If a person is selected at random, what is the probability that he or she plays tennis?						
c. What is the probability that a randomly selected student is in $10^{\text {th }}$ grade or female?							c. What is the probability that a randomly selected student plays soccer or is not in a club?						
d. What is the probability that a randomly selected student is in $11^{\text {th }}$ grade given that the student is female?							d. What is the probability that a randomly selected student is not in a club given that he or she does not play sports?						
5. Employment							6. Grade						
$\underset{\sim}{\infty}$		Has		Does not have a job		TOTAL	$\begin{gathered} \ddot{0} \\ \tilde{0} \\ 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$		9th	$10^{\text {th }}$	11 ${ }^{\text {th }}$	$12^{\text {th }}$	TOTAL
	13-15			126		164		Android	250	341	266	286	1143
	16-17			80		189		iPhone	294	277	332	276	1179
	18-20			48		259		TOTAL	544	618	598	562	2322
	TOTAL			254		612	a. Name the two variables displayed in the table. b. If a student is selected at random, what is the probability that he or she prefers the iPhone?						
a. Name the two variables displayed in the table.													
b. If a person is selected at random, what is the probability that he or she has a job?							c. What is the probability that a randomly selected student prefers Android or is in $12^{\text {th }}$ grade?						
d. What is the probability that a randomly selected person has a job given that he or she is 18-20 years old.							d. What is the probability that a randomly selected student prefers Android given that he or she is in $12^{\text {th }}$ grade?						

"Probability Using Two-way Frequency Tables" Answers

