\qquad
Writing Quadratics in Factored Form
Today, we will be looking at two aspects of quadratics:

1. How to write a standard form quadratic $\left(a x^{2}+b x+c\right)$ in factored form.

Remember: To factor a 3-term quadratic, you must first split the middle term by answering the questions What is $A \cdot C$? What is B ? What set of two numbers will multiply to $A \cdot C$, and add to B ?
2. How the intercepts of a quadratic are related to both standard and vertex forms.

EXAMPLE: Write in factored

 form.$$
a(x)=x^{2}+5 x-14
$$

Solve the Puzzle:

$\boldsymbol{A} \cdot \boldsymbol{C}=(1)(-14)=-14$
\& $\boldsymbol{B}=5$
$\underline{7} \cdot \underline{-2}=-14$

$$
\& \underline{7}+\underline{-2}=5
$$

Split Bx using 7 \& -2:

$$
+7 x-2 x
$$

$a(x)=x^{2}+\underline{7} \underline{-2} x-14$
Group \& Factor:
$a(x)=\underbrace{x^{2}+7 x} \underbrace{-2 x-14}$
$a(x)=1 x(x+7)-2(x+7)$
$a(x)=(x+7)(1 x-2)$
$a(x)=(x+7)(x-2)$

$\quad a(x)=(x+7)(x-2)$
EXAMPLE: Write in factored
form.
$\quad c(x)=4 x^{2}-4 x-8$
Puzzle:
$\begin{array}{l}\boldsymbol{A} \cdot \boldsymbol{C}=(4)(-8)=-32 \\ \& B=-4\end{array}$
$\underline{-8} \cdot \underline{4}=-32 \quad \& \underline{-8}+\underline{4}=-4$

Split Bx using -8 \& 4:

$$
-8 x+4 x
$$

$b(x)=4 x^{2}-8 x+4 x-8$
Group \& Factor:
$b(x)=\underbrace{4 x^{2}-8 x} \underbrace{+4 x-8}$
$b(x)=4 x(x-2)+4(x-2)$ $b(x)=(x-2)(4 x+4)$
$(4 x+4)$ can be factored... take out the 4: $4(x+1)$
$b(x)=4(x-2)(x+1)$

Y-intercept: $(0,-14)$
Vertex: $(-2.5,-20.25)$
!

Factors: $4(x-2)(x+1)$

X-intercept(s): $(-1,0) \&(2,0)$

Y-intercept: $(0,-8)$

Vertex: $(0.5,-9)$

What do you notice about the factors and the x-int's?

What do you notice about standard form and the y-int?

EXAMPLE: Write in factored form.

$$
b(x)=5 x^{2}-23 x+12
$$

Solve the Puzzle:
$\boldsymbol{A} \cdot \boldsymbol{C}=(5)(12)=60$
\& $\boldsymbol{B}=-23$
$-20 \cdot-3=60$

$$
\& \underline{-20}+\underline{-3}=-23
$$

Split Bx using -20 \& -3:
$-20 x-3 x$
$b(x)=5 x^{2}-20 x \underline{-3} x+12$
Group \& Factor:
$b(x)=\underbrace{5 x^{2}-20 x} \underbrace{-3 x+12}$

$$
b(x)=5 x(x-4)-3(x-4)
$$

Factors: $(x-4)(5 x-3)$

$$
b(x)=(x-4)(5 x-3)
$$

X-intercept(s):
$(0.6,0) \&(4,0)$

Y-intercept: $(0,12)$

Vertex: (2.3, - 14.45)

1. Write in factored form.

$$
f(x)=x^{2}+x-12
$$

Factors:
X-intercept(s):
Y-intercept(s):
Vertex:

\qquad

\qquad

