\qquad
Details of a Quadratic from the Equations \& the Graph

EXAMPLE 1. Standard form: $f(x)=x^{2}-6 x+8$
$f(x)=x^{2}-6 x+8$

$$
y \text {-int: }(0,8) \text { or } y=8
$$

Factored form: $f(x)=(x-2)(x-4)$
What x 's make $(x-2)=0$ or $(x-4)=0$

$$
x=2 \quad \text { or } \quad x=4
$$

Zeros/x-int: $x=2$ and $x=4$ or $(2,0)$ and $(4,0)$
Vertex Form: $f(x)=(x-3)^{2}-1$
Vertex: $(+3,-1)$
Compare the vertex to vertex form. Notice anything?
For the intervals below, write as LOWEST, HIGHEST.
The domain is x, and the range is y.
The x 's are unlimited: -forever to + forever
Domain: $-\infty, \infty \quad$ Range: -1, ∞
The y's are limited below by the vertex: $y=-1$ to + forever
The part that goes UP is on the right,
starting at the vertex, where $x=3$.

Interval of
Increase: 3, ∞

Interval of

Decrease: $-\infty$, 3
The part that goes DOWN is on the left, ending at the vertex, where $x=3$.

The only place where a quadratic stops is at the vertex (turning point). The rest of the time, it continues forever. So, to describe its movement, I use the infinity symbol: $-\infty$ means smallest forever $\&+\infty$ means biggest forever

1. Standard form: $f(x)=-x^{2}+6 x-8$
y-int:
\qquad
Factored form: $f(x)=-(x-2)(x-4)$

> Zeros/x-int:
\qquad
Vertex Form: $f(x)=-(x-3)^{2}+1$
Vertex: \qquad
Compare the vertex to vertex form. Notice anything?
For the intervals below, write as LOWEST, HIGHEST.
Domain: \qquad , \qquad Range: \qquad , \qquad
Interval of
\qquad Interval of
Decrease: \qquad
Increase: ,
2. Standard form: $f(x)=x^{2}+2 x-3$
y-int:
\qquad
Factored form: $f(x)=(x+3)(x-1)$
Zeros/x-int:
\qquad
Vertex Form: $f(x)=(x+1)^{2}-4$
Vertex: \qquad
Compare the vertex to vertex form. Notice anything?
For the intervals below, write as LOWEST, HIGHEST.
Domain: \qquad , \qquad Range: \qquad , \qquad
Interval of
\qquad _,

Interval of Decrease: \qquad , ,
Increase: , ,

3. Standard form: $f(x)=4 x^{2}+24 x+20$
y-int: \qquad
Factored form: $f(x)=4(x+1)(x+5)$
Zeros/x-int: \qquad
Vertex Form: $f(x)=4(x+3)^{2}-16$
Vertex: \qquad
Compare the vertex to vertex form. Notice anything?
For the intervals below, write as LOWEST, HIGHEST.
Domain: \qquad , Range: \qquad , Interval of
Increase: ______________ Interval of Decrease: \qquad

4. Standard form: $f(x)=-x^{2}-8 x-7$

$$
y \text {-int: }
$$

\qquad
Factored form: $f(x)=-(x+7)(x+1)$
Zeros/x-int: \qquad
Vertex Form: $f(x)=-(x+4)^{2}+9$
Vertex: \qquad
Compare the vertex to vertex form. Notice anything?
For the intervals below, write as LOWEST, HIGHEST.
Domain: \qquad , \qquad Range: \qquad _, \qquad
Interval of Interval of
Increase: \qquad , \qquad Decrease: \qquad
5. Standard form: $f(x)=-3 x^{2}+24 x-21$
y-int: \qquad
Factored form: $f(x)=-3(x-1)(x-7)$
Zeros/x-int: \qquad
Vertex Form: $f(x)=-3(x-4)^{2}+27$
Vertex: \qquad
Compare the vertex to vertex form. Notice anything?
For the intervals below, write as LOWEST, HIGHEST.
Domain: \qquad , \qquad Range: \qquad ,
Interval of Increase: \qquad
Interval of Decrease: \qquad
6. Standard form: $f(x)=x^{2}+8 x+7$
y-int: \qquad
Factored form: $f(x)=(x+7)(x+1)$
Zeros/x-int: \qquad
Vertex Form: $f(x)=(x+4)^{2}-9$
Vertex: \qquad
Compare the vertex to vertex form. Notice anything?
For the intervals below, write as LOWEST, HIGHEST.
Domain: \qquad , \qquad Range: \qquad ,
Interval of
Increase: \qquad

Interval of
Decrease: \qquad ,

Now, we need to work on using correct interval notation. So far, you have written your DOMAIN, RANGE, Interval of INCREASE and Interval of DECREASE as "lowest, highest." While this format is correct, it is also incomplete.

The incomplete notation you have used tells us where the interval starts and where it ends. But it does not tell us whether the start and end are part of the interval ("included") or not part of the interval.

Think of it like "greater than or equal to" instead of simply "greater than"
[\&] mean "or equal to," whereas (\&) mean "but not equal to"
Translate our inequality symbols using the examples below.

EXAMPLE 3. $-2 \leq x \leq 5$ Interval: $[-2,5]$	EXAMPLE 4. Interval: $(-2,5)$	EXAMPLE 5. $-2<x \leq 5$ Interval: $(-2,5]$	7. $-2 \leq x<5$ Interval:	8. $3<x \leq 7$ Interval:
9. $3 \leq x \leq 7$ Interval:	$10.3 \leq x<7$ Interval:	11. $3<x<7$ Interval:	12. $-8<y \leq-4$ Interval:	13. $-8 \leq y \leq-4$ Interval:

Nothing can be equal to infinity, which means that ∞ will never be included. Meaning: Infinity will always be $(-\infty$ or,$\infty)$ and never next to $[-\infty$ or,$\infty]$

$14 .-\infty<x \leq 5$	$15 .-\infty<x<5$	$16.7<y<\infty$	$17.7<y<\infty$	$18 .-\infty<x<\infty$
Interval:	Interval:	Interval:	Interval:	Interval:

For intervals of increase and decrease, the vertex (turning point) is neither increasing nor decreasing, so it will not be included in either.

Meaning: Intervals of increase and decrease are always ($-\infty$, vertex) or (vertex, ∞)

19. Increase: $6, \infty$	20. Decrease: $-\infty, 6$	21. Increase: $-\infty,-4$	22. Decrease: $-4, \infty$
should be: $_6, \infty _$	should be: $_-\infty, 6 \ldots$	should be: $_-\infty,-4 _$	should be: $_-4, \infty _$

For domain and range, the vertex is a part of the graph, which means it is included in both the domain and the range.
Meaning: the domain and range will always be either: $(-\infty, \infty)$, [vertex, ∞) or ($-\infty$, vertex]

23. Domain: $-\infty, \infty$ should be: $\quad-\infty, \infty$	24. Range: $5, \infty$ should be: $5, \infty$	25. Range: $-\infty, 7$ should be: $\quad-\infty, 7$	26. Domain: $-\infty, \infty$ should be: $\quad-\infty, \infty$

Using the notation that you now know, go back to questions 1-6 and put the correct brackets on the Domain, Range and Intervals of Increase and Decrease.

