Name:	Per:	

Linear vs. Quadratic & Writing Equations from Tables

<u>Determining if a function is linear or quadratic from a table:</u>
If the first differences are the same, then it is linear. If the second differences are the same, then it's quadratic.

Linear	Quadratic		
Determine if the function is linear or quadratic.	Determine if the function is linear or quadratic.		

Determine if the function is Linear or Quadratic. Use the word bank to fill in the blanks.

The function is because it has a that is			
Possible responses are: Linear	or Quadratic 1st difference or	2 nd difference constant	
x y 1st 1st diff. is +7 1 -15 +7 2nd because 2 -8 +7 -15+7=-8 3 -1 +7 -8+7=-1 4 6 +7 -1+7=6 5 13 6+7=13	EXAMPLE x y 1st 2nd 2 16 +8 -6 3 24 +2 -6 4 26 -4 -6 5 22 -6	1. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
The function is <u>linear</u> because it has a <u>1st difference</u> that is <u>constant</u> .	The function is quadratic because it has a 2 nd difference that is constant .	The function is because it has a that is	
2. x y 1 -1 2 2 3 5 4 8 5 11	3. x y 1 15 2 9 3 3 4 -3 5 -9	4. x y 1 -8 2 -3 3 0 4 1 5 0	
The function is because it has a that is	The function is because it has a that is	The function is because it has a that is	
5. x y 1 -18 2 -16 3 -14 4 -12 5 -10 5	6. x y 1 -1 2 11 3 17 4 17 5 11	7. x y 1 -14 2 -5 3 -6 4 -17 5 -38	
The function is because it has a that is	The function is because it has a that is	The function is because it has a that is	

Name: P	er:
---------	-----

Writing the Equation from a Table
A linear equation uses the formula f(x) = mx + b, so you need to find m & b.
A quadratic equation uses the formula $f(x) = ax^2 + bx + c$, so you need to find a, b, & c.

Steps for writing the	Linear Example
Linear equation	Linear Example
Step 1: Find the 1 st differences.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Step 2:	When it's linear, use:
Find the leading	f(x) = mx + b
coefficient (the first	first difference
number in the equation), <i>m</i> .	$m = \frac{first \ difference}{1}$
equation), m.	1
Here's how	$m = \frac{-3}{1}$
When it's <i>linear</i> ,	-
f(x) = mx + b, the	m = -3
leading coefficient is:	
1st difference	My equation so far:
$m = \frac{1}{1}$	f(x) = mx + b
	f(x) = -3x + b
Step 3:	b = y when $x = 0$
Find the constant	(use the 1st difference to get 0)
(the last number in	
the equation-the one	I know that the y-value at
that doesn't have an	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
x), b.	0 b that it will go down 3 units
Here's how	-3 to become 7
The constant (b) is	1 7 (the y-value at
where <i>x</i> is 0.	x = 1). So
	b - 3 = 7
So, use the	b = 10
differences to find what <i>y</i> would be if <i>x</i>	My equation as few
what y would be if x were 0.	My equation so far: f(x) = -3x + b
WCIC U.	f(x) = -3x + b $f(x) = -3x + 10$
	I'm done! The equation of this
	line is: $f(x) = -3x + 10$.
<u> </u>	

o you need to mid u, b, a c.	
8. x y 1 -1 2 2 3 5 4 8 5 11 11	9. x y 1 15 2 9 3 3 4 -3 5 -9
10. $\begin{array}{c cccc} x & y \\ \hline 1 & -18 \\ 2 & -16 \\ \hline 3 & -14 \\ \hline 4 & -12 \\ \hline 5 & -10 \\ \hline \end{array}$	11. $\begin{array}{c cccc} x & y \\ \hline 1 & -3 \\ 2 & 2 \\ \hline 3 & 7 \\ \hline 4 & 12 \\ \hline 5 & 17 \\ \end{array}$
12. $\begin{array}{c cccc} x & y \\ \hline 1 & 24 \\ \hline 2 & 17 \\ \hline 3 & 10 \\ \hline 4 & 3 \\ \hline 5 & -4 \\ \end{array}$	13. $\begin{array}{c cccc} x & y \\ \hline 1 & -17 \\ \hline 2 & -6 \\ \hline 3 & 5 \\ \hline 4 & 16 \\ \hline 5 & 27 \\ \end{array}$

Name:	Per:
-------	------

Steps for writing the Quadratic equation	Quadratic Example	14. x y	15. x y
Step 1: Find the 1 st differences and the 2 nd differences.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 10 2 3 3 4 4 13 5 30	1 -8 2 -3 3 0 4 1 5 0
Step 2: Find the leading coefficient (the first number in the equation), <i>a</i> .	When it's quadratic, use: $f(x) = ax^{2} + bx + c$ $a = \frac{second\ difference}{2}$		
Here's how When it's quadratic, $f(x) = ax^2 + bx + c,$ the leading coefficient is: $a = \frac{2nd \ difference}{2}$	$a = \frac{+4}{2}$ $a = 2$ My equation so far: $f(x) = ax^{2} + bx + c$ $f(x) = 2x^{2} + bx + c$	$ \begin{array}{c cccc} & 16. \\ \hline & x & y \\ \hline & 1 & -1 \\ \hline & 2 & 11 \\ \hline & 3 & 17 \\ \hline & 4 & 17 \end{array} $	17. x y 1 -14 2 -5 3 -6 4 -17
Step 3: Find the constant (the last number in the equation-the one that doesn't have an <i>x</i>), <i>c</i> . Here's how The constant (<i>b</i>) is where <i>x</i> is 0.	$c = y \text{ when } x = 0$ (Start by using the 2 nd difference to find the 1 st) $0 c \begin{array}{ c c }\hline 0 & c & 2^{nd} \\\hline 1 & 9 & +4 \\\hline 2 & 3 & -6 & +4 \\\hline \end{array}$	5 11	5 -38
First, use the second differences to figure out what the first difference is	So, focusing on the 1st difference that I need 1st 2^{nd} ? 1st $+4 = -6$ 1st $= -10$	18. x y	19.
Now, use the 1 st differences to find what <i>y</i> would be if <i>x</i> were 0.	$ \begin{array}{ c c } \hline 0 & c \\ \hline 1 & 9 \\ \hline \end{array} $ $ \begin{array}{ c c } \hline 1 & c & -10 & = 9 \\ c & = 19 \\ \hline $ $ \begin{array}{ c c } \hline My equation so far: \\ f(x) & = 2x^2 + bx + c \\ f(x) & = 2x^2 + bx + 19 \\ \hline \end{array} $	1 7 2 11 3 17 4 25 5 35	1 3 2 13 3 19 4 21 5 19
Finally, use the point (1, 9) to solve for <i>b</i> . (Plug them in)	$(1,9) \to f(x) = 2x^2 + bx + 19$ $9 = 2(1)^2 + b(1) + 19$ $9 = 2 + 1b + 19$ $9 = b + 21$ $-12 = b$ So, my equation is: $f(x) = 2x^2 - 12x + 19$		

Name: ______ Per: _____

When you're done solving the problems on this handout, make sure you check your answers against the **correct answers below**.

4	m) C (' ' o lord') Ond	2	m) C .: 11 1 4 et 1:00
1.	The function is $\underline{\mathbf{quadratic}}$ because it has a $\underline{2^{nd}}$	2.	The function is <u>linear</u> because it has a <u>1st difference</u>
	<u>difference</u> that is <u>constant</u> .		that is <u>constant</u> .
3.	The function is <u>linear</u> because it has a <u>1st difference</u>	4.	The function is quadratic because it has a 2 nd
	that is constant .		<u>difference</u> that is <u>constant</u> .
5.	The function is <u>linear</u> because it has a <u>1st difference</u>	6.	The function is quadratic because it has a 2 nd
	that is constant .		difference that is constant.
7.	The function is quadratic because it has a 2 nd	_	
	difference that is constant.	8.	f(x) = 3x - 4
9.	f(x) = -6x + 21	10.	f(x) = 2x - 20
11.	f(x) = 5x - 8	12.	f(x) = -7x + 31
13.	f(x) = 11x - 28	14.	$f(x) = 4x^2 - 19x + 25$
) (w) 11w 10) (1) 11 171 1 20
15	$f(x) = -x^2 + 8x - 15$	16	$f(x) = -3x^2 + 21x - 19$
13.	f(x) = -x + 6x - 13	10.	f(x) = -3x + 21x - 17
17	$f(u) = -\Gamma u^2 + 2Au - 22$	10	$f(x) = x^2 + x + 5$
1/.	$f(x) = -5x^2 + 24x - 33$	18.	$f(x) = x^- + x + 5$
1.0	C() 2 3 4 4 5 4 4		
19.	$f(x) = -2x^2 + 16x - 11$		