\qquad Per: \qquad
Linear vs. Quadratic \& Writing Equations from Tables

Determining if a function is linear or quadratic from a table:
If the first differences are the same, then it is linear. If the second differences are the same, then it's quadratic.

Linear				Quadratic				
Determine if the function is linear or quadratic.				Determine if the function is linear or quadratic.				
x				x	y	$1^{\text {st }}$		
1	7		Fill in the blanks:	1	9	-6	$2^{\text {nd }}$	Fill in the blanks:
2	4	-3		2	3	-2	+4	The function is quadratic because it has
3	1	-3	The function is linear because it has a	3	1	+2	+4	a $2^{\text {nd }}$ difference that is constant.
4	-2	-3	$1^{\text {st }}$ difference that is constant.	4	3		+4	
5	-5	-3		5	9			

Determine if the function is Linear or Quadratic. Use the word bank to fill in the blanks.
The function is ___ because it has a
that is

\qquad Per: \qquad
Writing the Equation from a Table
A linear equation uses the formula $f(x)=m x+b$, so you need to find $m \& b$.
A quadratic equation uses the formula $f(x)=a x^{2}+b x+c$, so you need to find $a, b, \& c$.

Steps for writing the Linear equation...	Linear Example
Step 1: Find the $1^{\text {st }}$ differences.	x y 1 7 2 4 3 1 4 -2 5 -5
Step 2: Find the leading coefficient (the first number in the equation), m. Here's how When it's linear, $f(x)=m x+b$, the leading coefficient is: $m=\frac{1 \text { st difference }}{1}$	When it's linear, use: $\begin{gathered} f(x)=m x+b \\ m=\frac{\text { first difference }}{1} \\ m=\frac{-3}{1} \\ m=-3 \end{gathered}$ My equation so far: $\begin{gathered} f(x)=m x+b \\ f(x)=-3 x+b \end{gathered}$
Step 3: Find the constant (the last number in the equation-the one that doesn't have an $x), b$. Here's how The constant (b) is where x is 0 . So, use the differences to find what y would be if x were 0.	$b=y \text { when } x=0$ (use the $1^{\text {st }}$ difference to get 0) I know that the y-value at $x=0$ is b, and that it will go down 3 units to become 7 (the y-value at $x=1$). So... $\begin{gathered} b-3=7 \\ b=10 \end{gathered}$ My equation so far: $\begin{gathered} f(x)=-3 x+b \\ f(x)=-3 x+10 \end{gathered}$ I'm done! The equation of this line is: $f(x)=-3 x+10$.

Name: \qquad Per: \qquad

\qquad Per: \qquad
When you're done solving the problems on this handout, make sure you check your answers against the correct answers below.

1. The function is quadratic because it has a $\underline{2}^{\text {nd }}$ difference that is constant.	2. The function is linear because it has a $1^{\text {st }}$ difference that is constant.
3. The function is linear because it has a $1^{\text {st }}$ difference that is constant.	4. The function is quadratic because it has a $\mathbf{2 n d}^{\text {nd }}$ difference that is constant.
5. The function is linear because it has a $1^{\text {st }}$ difference that is constant.	6. The function is quadratic because it has a $\underline{2}^{\text {nd }}$ difference that is constant.
7. The function is quadratic because it has a $\underline{2}^{\text {nd }}$ difference that is constant.	8. $f(x)=3 x-4$
9. $f(x)=-6 x+21$	10. $f(x)=2 x-20$
11. $f(x)=5 x-8$	12. $f(x)=-7 x+31$
13. $f(x)=11 x-28$	14. $f(x)=4 x^{2}-19 x+25$
15. $f(x)=-x^{2}+8 x-15$	16. $f(x)=-3 x^{2}+21 x-19$
17. $f(x)=-5 x^{2}+24 x-33$	18. $f(x)=x^{2}+x+5$
19. $f(x)=-2 x^{2}+16 x-11$	

