\qquad
Identifying Quadratic Information from a Graph
There are three forms of the quadratic equation: Standard $\left(y=a x^{2}+b x+c\right)$, Vertex $\left(y=a(x-h)^{2}+k\right)$, and Factored Form $\left(y=a\left(x-r_{1}\right)\left(x-r_{2}\right)\right)$. Each has its own purpose and provides its own set of information.

Standard Form	Vertex Form	Factored Form
a is the only part that is found in all three forms. \boldsymbol{a} is the stretch, which is like the "slope" of the quadratic equation. It tells you how much the graph moves up (when a is positive) or down (when a is negative). Finding a on a negative quadratic:		
\boldsymbol{b} is used to find the vertex and the x-intercepts. It is not any part of the graph on its own, though you can use the axis of symmetry ($x=\ldots$) and the stretch (a) to find b using the formula $x=-\frac{b}{2 a} .$	\boldsymbol{h} is the axis of symmetry. This is also known as the "middle x " or the x-value of the vertex.	$r_{1} \& r_{2}$ are the x-intercepts, also called the solutions, zeros or roots of the quadratic. The graph of the quadratic will always cross the x-axis at $\left(r_{1}, 0\right) \&\left(r_{2}, 0\right)$
\boldsymbol{c} is the y-intercept. The graph of the quadratic will always cross the y-axis at $(0, c)$.	\boldsymbol{k} is the maximum (top) or the minimum (bottom) of the graph. This is also known as y-value of the vertex. When it's on top, it's the maximum: When it's on bottom, it's the minimum:	

For each given quadratic, identify $\mathbf{a}, \mathbf{c}, \mathbf{h}, \mathbf{k}, \mathbf{r}_{1} \& \mathbf{r}_{2}$.

