\qquad
Using the Axis of Symmetry to Determine b
Most of the parts of our 3 quadratic equation forms are available directly from a graph - all except for b in the standard form equation. This does not mean, however, that we cannot determine b from the graph. It only means that you have to solve for it, because it is not given.

The standard form equation to find the axis of symmetry is $x=\frac{-b}{2 a}$. If you have the axis of symmetry (the "middle x ", which is the x -value of the vertex, also known as h), and you have the stretch (also known as a), then you can plug that information into the formula and solve for b.

plug in $h \sqrt{ }^{(x)}=\frac{-b}{2 a}$ plug in a
 (the axis of symmetry) (the stretch)

EXAMPLE
 Determine the value of b if the axis of

 symmetry is at $h=7$, and the stretch is $a=3$.$$
x=\frac{-b}{2 a}
$$

Since the axis of symmetry (h) is our x-value, we will plug $h=7$ in for x. We will also plug in $a=3$.

$$
(7)=\frac{-b}{2(3)}
$$

Simplify 2(3)

$$
7=\frac{-b}{6}
$$

Multiply both sides by 6 .

$$
\begin{gathered}
6 \cdot 7=\frac{-b}{6} \cdot 6 \\
42=-b
\end{gathered}
$$

Divide both sides by -1 .

$$
42 \div-1=-b \div-1
$$

$-42=b$

$$
b=-42
$$

1. Determine the value of b if the axis of symmetry is at $h=-3$, and the stretch is $a=-1$.

EXAMPLE
Determine the value of b if the axis of symmetry is at $h=0$, and the stretch is $a=5$.

$$
x=\frac{-b}{2 a}
$$

Since the axis of symmetry (h) is our x-value, we will plug $h=0$ in for x.

We will also plug in $a=5$.

$$
(0)=\frac{-b}{2(5)}
$$

Simplify 2(5)

$$
0=\frac{-b}{10}
$$

Multiply both sides by 10.

$$
\begin{aligned}
10 \cdot 0 & =\frac{-b}{10} \cdot 10 \\
0 & =-b
\end{aligned}
$$

Divide both sides by -1 .

$$
\begin{gathered}
0 \div-1=-b \div-1 \\
0=b \\
b=0
\end{gathered}
$$

2. Determine the value of b if the axis of symmetry is at $h=0$, and the stretch is $a=-3$.

EXAMPLE

Determine the value of b if the axis of symmetry is at $h=-3$, and the stretch is $a=-4$.

$$
x=\frac{-b}{2 a}
$$

Since the axis of symmetry (h) is our x-value, we will plug $h=-3$ in for x.

We will also plug in $a=-4$.

$$
(-3)=\frac{-b}{2(-4)}
$$

Simplify 2(-4)

$$
-3=\frac{-b}{-8}
$$

Simplify $\frac{-b}{-8}$ by canceling the negative.

$$
-3=\frac{b}{8}
$$

Multiply both sides by 8 .

$$
\begin{gathered}
8 \cdot-3=\frac{b}{8} \cdot 8 \\
-24=b \\
b=-24
\end{gathered}
$$

3. Determine the value of b if the axis of symmetry is at $h=-2$, and the stretch is $a=2$.
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { 4. Determine the value of } b \text { if the axis } \\ \text { of symmetry is at } h=-1 \text {, and the } \\ \text { stretch is } a=-2 .\end{array} & \begin{array}{l}\text { 5. Determine the value of } b \text { if the axis } \\ \text { of symmetry is at } h=-1, \text { and the } \\ \text { stretch is } a=1 .\end{array} & \begin{array}{l}6 . \text { Determine the value of } b \text { if the axis } \\ \text { of symmetry is at } h=1, ~ a n d ~ t h e ~\end{array} \\ \text { stretch is } a=3 .\end{array}\right]$.
