\qquad

Writing Quadratic Equations from a Graph (Part 1)

To write the standard $\left(f(x)=a x^{2}+b x+c\right)$, vertex $\left(f(x)=a(x-h)^{2}+k\right)$ and factored form $(f(x)=a(x-$ $\left.r_{1}\right)\left(x-r_{2}\right)$) equations of a quadratic, you must identify $a, b, c, h, k, r_{1} \& r_{2}$. All of which can be found using the graph.

a is the stretch: go over 1, how far do you go up or down before you hit the curve?	b is not on the graph, but it can be found using the formula $x=\frac{-b}{2 a}$ (same as $h=\frac{-b}{2 a}$)	c is the y intercept: where does the curve cross the y-axis?
h is the axis of symmetry: what is the x-value of the vertex?	k is the maximum or minimum: what is the y-value of the vertex?	r_{1} and r_{2} are the x-intercepts (roots/zeros/solutions): where does the curve cross the x-axis?

Write each equation form for the quadratic.

1.		$\begin{aligned} & a= \\ & b= \\ & c= \\ & h= \\ & k= \\ & r_{1}= \\ & r_{2}= \end{aligned}$	Standard Form: Vertex Form: Factored Form:
2.		$\begin{aligned} & a= \\ & b= \\ & c= \\ & h= \\ & k= \\ & r_{1}= \\ & r_{2}= \end{aligned}$	Standard Form: Vertex Form: Factored Form:
3.		$\begin{aligned} & a= \\ & b= \\ & c= \\ & h= \\ & k= \\ & r_{1}= \\ & r_{2}= \end{aligned}$	Standard Form: Vertex Form: Factored Form:
4.		$\begin{aligned} & a= \\ & b= \\ & c= \\ & h= \\ & k= \\ & r_{1}= \\ & r_{2}= \end{aligned}$	Standard Form: Vertex Form: Factored Form:

