Name: _____

Simplifying Monomial Exponents (Part 1)

A **positive exponent** tells you **how many times you multiply** the 1 that is always there by the base number (or variable, or group). So, $x^3 = 1 \cdot x \cdot x \cdot x$, just like $x^2 = 1 \cdot x \cdot x$ and $x^1 = 1 \cdot x$. If the exponent is 0, that means that you are not multiplying 1 by anything (but that <u>does not</u> make the answer 0). $x^0 = 1 \cdot no \ x's = 1$.

Expand each exponent.
Monomial Expansion
$1. x^5 = 1 \cdot$
$2.3^4 = 1 \cdot$
$3. (-2)^6 =$
$(ab)^3 =$
$(-5b)^5 =$

For each product, expand the monomial using the exponent, then rewrite it as a monomial with only 1 base.

	-		
Monomial Expansion	Simplified Equation		
$6. x^5 x^3 = 1 \cdot$	$x^5x^3 = x^{\Box}$		
$7.3^43^6 = 1$.	$3^4 3^6 = 3^{\Box}$		
$8. (-2)^6 (-2)^3 =$	$(-2)^6(-2)^3 = (-2)^{\Box}$		
9. $(ab)^3(ab)^4 =$	$(ab)^3(ab)^4 = a \Box b \Box$		
$10. (-5b)^5 (-5b)^2 =$	$(-5b)^5(-5b)^2 = (-5)\Box b\Box$		

What happens to the exponent when you multiply two monomials with the same base?

Rule: $x^a x^b = x$ ——

Use the rule you discovered to simplify each monomial.

11. 7 ¹ 7 ⁴	12. m ⁶ m ⁷	13. $x^4 x^5$
14. $(-4)^8(-4)^5$	15. $x^7 x^0$	16. $(2a)^3(2a)^5$
17. $(gh)^2(gh)^3$	18. $(4x)^6(4x)^8$	19. <i>b</i> ⁴ <i>b</i> ⁸
20. $(-5)^5(-5)^4$	21. $(-x)^6(-x)^2$	22. <i>r</i> ⁷ <i>r</i> ⁵

A **negative exponent** tells you **how many times you DIVIDE** the 1 that is always there by the base number (or variable, or group). So, $x^{-3} = \frac{1}{x \cdot x \cdot x}$, just like $x^2 = \frac{1}{x \cdot x}$ and $x^1 = \frac{1}{x}$. If the exponent is 0, that means that you are not dividing 1 by anything except another 1 (but that <u>does not</u> make the answer 0). $x^0 = \frac{1}{1 \cdot no x's} = \frac{1}{1} = \boxed{1}$.

Expand each exponent.

Monomial Expansion			
23. $x^{-5} =$	1	_	
24. 3 ⁻⁴ =	1	_	
25. $(-2)^{-6} =$			
26. $(ab)^{-3} =$			
27. $(-5b)^{-5} =$			

For each product, expand the monomial using the exponent, then rewrite it as a monomial with only 1 base or as a fraction.

Monomial Expansion	Simplified Equation
$28. x^5 x^{-3} = \frac{1 \cdot}{}$	$x^{5}x^{3} =$
$29.3^{-4}3^6 = \frac{1}{2}$	$3^4 3^6 =$
$30. (-2)^{-6} (-2)^3 =$	$(-2)^{-6}(-2)^3 =$
$31. (ab)^{-3} (ab)^{-4} =$	$(ab)^3(ab)^4 =$
$32. (-5b)^{-5} (-5b)^{-2} =$	$(-5b)^5(-5b)^2 =$

What happens to the exponent when you multiply two monomials with the same base **when one of the exponents is negative**?

Rule: $x^{a}x^{-b} = x$ ——

Use the rule you discovered to simplify each monomial.

33. $7^{-1}7^4$	34. $m^6 m^{-7}$	35. $x^{-4}x^{5}$	36. $(-4)^{-8}(-4)^5$
37. $x^{-7}x^{0}$	38. $(2a)^{-3}(2a)^5$	39. $(gh)^2(gh)^{-3}$	40. $(4x)^{-6}(4x)^{8}$