\qquad

Simplifying Monomial Exponents (Part 1)

A positive exponent tells you how many times you multiply the 1 that is always there by the base number (or variable, or group). So, $x^{3}=1 \cdot x \cdot x \cdot x$, just like $x^{2}=1 \cdot x \cdot x$ and $x^{1}=1 \cdot x$. If the exponent is 0 , that means that you are not multiplying 1 by anything (but that does not make the answer 0). $x^{0}=1 \cdot$ no $x^{\prime} s=1$.

Expand each exponent.

Monomial Expansion
$1 \cdot x^{5}=1 \cdot$
$2 \cdot 3^{4}=1 \cdot$
$3 \cdot(-2)^{6}=$
$4 \cdot(a b)^{3}=$
$5 \cdot(-5 b)^{5}=$

For each product, expand the monomial using the exponent, then rewrite it as a monomial with only 1 base.

Monomial Expansion	Simplified Equation
$6 . x^{5} x^{3}=1 \cdot$	$x^{5} x^{3}=x \square$
$7.3^{4} 3^{6}=1 \cdot$	$3^{4} 3^{6}=3 \square$
$8 .(-2)^{6}(-2)^{3}=$	$(-2)^{6}(-2)^{3}=(-2) \square$
$9 .(a b)^{3}(a b)^{4}=$	$(a b)^{3}(a b)^{4}=a \square$
$10 .(-5 b)^{5}(-5 b)^{2}=$	$(-5 b)^{5}(-5 b)^{2}=(-5)^{\square} b \square$

What happens to the exponent when you multiply two monomials with the same base?
\qquad
Rule: $x^{a} x^{b}=x$
Use the rule you discovered to simplify each monomial.

11. $7^{1} 7^{4}$	12. $m^{6} m^{7}$	13. $x^{4} x^{5}$
14. $(-4)^{8}(-4)^{5}$	15. $x^{7} x^{0}$	16. $(2 a)^{3}(2 a)^{5}$
$17 .(g h)^{2}(g h)^{3}$	$18 .(4 x)^{6}(4 x)^{8}$	19. $b^{4} b^{8}$
$20 .(-5)^{5}(-5)^{4}$	$21 .(-x)^{6}(-x)^{2}$	22. $r^{7} r^{5}$

A negative exponent tells you how many times you DIVIDE the 1 that is always there by the base number (or variable, or group). So, $x^{-3}=\frac{1}{x \cdot x \cdot x}$, just like $x^{2}=\frac{1}{x \cdot x}$ and $x^{1}=\frac{1}{x}$. If the exponent is 0 , that means that you are not dividing 1 by anything except another 1 (but that does not make the answer 0). $x^{0}=\frac{1}{1 \cdot n o x^{\prime} s}=\frac{1}{1}=1$.

Expand each exponent.

| Monomial Expansion |
| :---: | :---: |
| $23 . x^{-5}=$ |
| $24.3^{-4}=$ |
| $25 .(-2)^{-6}=$ |
| $26 .(a b)^{-3}=$ |
| $27 .(-5 b)^{-5}=$ |

For each product, expand the monomial using the exponent, then rewrite it as monomial with only 1 base or as a fraction.

Monomial Expansion	Simplified Equation
$28 . x^{5} x^{-3}=\frac{1 \cdot}{}$	$x^{5} x^{3}=$
$29.3^{-4} 3^{6}=\frac{1 \cdot}{}$	$3^{4} 3^{6}=$
$30 .(-2)^{-6}(-2)^{3}=$	$(-2)^{-6}(-2)^{3}=$
$31 .(a b)^{-3}(a b)^{-4}=$	$(a b)^{3}(a b)^{4}=$
$32 .(-5 b)^{-5}(-5 b)^{-2}=$	$(-5 b)^{5}(-5 b)^{2}=$

What happens to the exponent when you multiply two monomials with the same base when one of the exponents is negative?

Rule: $x^{a} x^{-b}=x$
Use the rule you discovered to simplify each monomial.

33. $7^{-1} 7^{4}$	$34 . m^{6} m^{-7}$	$35 . x^{-4} x^{5}$	$36 .(-4)^{-8}(-4)^{5}$
$37 . x^{-7} x^{0}$	$38 .(2 a)^{-3}(2 a)^{5}$	$39 .(g h)^{2}(g h)^{-3}$	$40 .(4 x)^{-6}(4 x)^{8}$

