\qquad

Fractional Exponents

A fractional exponent is simply a root expressed as an exponent. Let's start with rewriting roots as exponents.

Example	1. $\sqrt{5}=5^{?}$	2. $\sqrt{a}=a^{?}$	
Example	$\sqrt{x}=x^{\frac{1}{2}}$	$3 \cdot \sqrt[5]{x}=x^{?}$	4. $\sqrt[4]{8}=8^{?}$

This is why a root cancels an exponent:

$$
\sqrt{x^{2}}=\left(x^{2}\right)^{\frac{1}{2}}=x^{(2)\left(\frac{1}{2}\right)}=x^{1}=x
$$

Generally, we do not go through all of that work. We simply accept that they cancel each other and follow the rule.
The next thing that we need to understand is what a fractional exponent is asking us to do. We all know that x^{3} means that we want to multiply by x three times, but what do we want if it says $x^{\frac{1}{3}}$? It's not division...so what do we do?
There is no simple straight-forward process that gets your answer every time - it's a thought puzzle. $x^{\frac{1}{3}}$ is asking you to find what would multiply by itself three times to find x.

Example $256^{\frac{1}{4}}=?$	$\begin{aligned} & 256=? \cdot ? \cdot ? \cdot ? \\ & \text { What times itself } 4 \text { times will equal } 256 ? \\ & 1 \cdot 1 \cdot 1 \cdot 1=(1)(1)=1 \\ & 2 \cdot 2 \cdot 2 \cdot 2=(4)(4)=16 \\ & 3 \cdot 3 \cdot 3 \cdot 3=(9)(9)=81 \\ & 4 \cdot 4 \cdot 4 \cdot 4=(16)(16)=256 \text { found it! } \end{aligned}$	$256^{\frac{1}{4}}=4$ because $4 \cdot 4 \cdot 4 \cdot 4=256$
5. $27^{\frac{1}{3}}=$?	$27=? \cdot ? \cdot ?$ What times itself 3 times will equal 27? Stop when you find it! $1 \cdot 1 \cdot 1=$ $2 \cdot 2 \cdot 2=$ $3 \cdot 3 \cdot 3=$ $4 \cdot 4 \cdot 4=$ $5 \cdot 5 \cdot 5=$...	$27^{\frac{1}{3}}=$
$6.32^{\frac{1}{5}}=\text { ? }$	$32=? \cdot ? \cdot ? \cdot ? \cdot ?$ What times itself 5 times will equal 32? Stop when you find it! $\begin{array}{ll} 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1= & 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2= \\ 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3= & 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4= \\ 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5= & \ldots \end{array}$	$32^{\frac{1}{5}}=$

7. $64^{\frac{1}{3}}$	8. $100,000^{\frac{1}{5}}$	$9.125^{\frac{1}{3}}$
$10.81^{\frac{1}{4}}$	$11.729^{\frac{1}{3}}$	$12.64^{\frac{1}{6}}$
13. $8^{\frac{1}{3}}$	$14.243^{\frac{1}{5}}$	$15.64^{\frac{1}{2}}$

Now that we know how to simplify our fractional exponents, lets look at how to determine the value of x when we know what raising it to a power will equal. For the purposes of this practice, we will assume that all roots are positive.
Example
Rewrite the problem using a fractional
determine the value of x, assuming that
number.

\[\)| $x^{4}=625$ |
| :--- |
| is the same as |
| $x \cdot x \cdot x \cdot x=625,$ |
| which means that |
| $x=625^{\frac{1}{4}}$ |

\]

What times itself 4 times will get me 625?
$1 \cdot 1 \cdot 1 \cdot 1=1$ nope
$2 \cdot 2 \cdot 2 \cdot 2=16$ nope

$$
5 \cdot 5 \cdot 5 \cdot 5=625!!
$$

$$
\text { So, if } x^{4}=625 \text {, then } x=625^{\frac{1}{4}}=5
$$

16. Rewrite the problem using a fractional exponent, then determine the value of x, assuming that x is a positive number.

$$
x^{4}=16
$$

18. Rewrite the problem using a fractional exponent, then determine the value of x, assuming that x is a positive number.

$$
x^{3}=216
$$

20. Rewrite the problem using a fractional exponent, then determine the value of x, assuming that x is a positive number.

$$
x^{4}=256
$$

22. Rewrite the problem using a fractional exponent, then determine the value of x, assuming that x is a positive number.

$$
x^{4}=81
$$

Example

Rewrite the problem using a fractional exponent, then determine the value of x, assuming that x is a positive number.

$$
\begin{gathered}
x^{3}=512 \\
x \cdot x \cdot x=512, \\
x=512^{\frac{1}{3}} \\
1 \cdot 1 \cdot 1=1 \text { nope } \\
2 \cdot 2 \cdot 2=8 \text { nope } \\
\ldots \\
8 \cdot 8 \cdot 8=512!!
\end{gathered}
$$

$$
\text { So, if } x^{3}=512, \text { then } x=512^{\frac{1}{3}}=8
$$

17. Rewrite the problem using a fractional exponent, then determine the value of x, assuming that x is a positive number.

$$
x^{8}=1
$$

19. Rewrite the problem using a fractional exponent, then determine the value of x, assuming that x is a positive number.

$$
x^{2}=49
$$

21. Rewrite the problem using a fractional exponent, then determine the value of x, assuming that x is a positive number.

$$
x^{3}=1000
$$

23. Rewrite the problem using a fractional exponent, then determine the value of x, assuming that x is a positive number.

$$
x^{3}=125
$$

Answers

1. $\frac{1}{2}$	2. $\frac{1}{2}$	3. $\frac{1}{5}$		4. $\frac{1}{4}$	5. $27^{\frac{1}{3}}=3$
6. $32^{\frac{1}{5}}=2$	$7.64{ }^{\frac{1}{3}}=4$	8. $100,000^{\frac{1}{5}}=10$		9. $125^{\frac{1}{3}}=5$	$10.81^{\frac{1}{4}}=3$
$11.729^{\frac{1}{3}}=9$	12. $64^{\frac{1}{6}}=2$	$13.8{ }^{\frac{1}{3}}=2$		$14.243^{\frac{1}{5}}=3$	$15.64^{\frac{1}{2}}=8$
16. $16^{\frac{1}{4}}=2$	17. $1^{\frac{1}{8}}=1$	18. $216^{\frac{1}{3}}=6$			19. $49^{\frac{1}{2}}=7$
20. $256^{\frac{1}{4}}=4$	21. $1000{ }^{\frac{1}{3}}=10$	22. $81^{\frac{1}{4}}=3$			23. $125^{\frac{1}{3}}=5$

