Name: _____

Fractional Exponents

A fractional exponent is simply a root expressed as an exponent. Let's start with rewriting roots as exponents.							
Example	1. $\sqrt{5} = 5^{?}$	2. $\sqrt{a} = a^{?}$					
$\sqrt{x} = x^{\frac{1}{2}}$							
Example	3. $\sqrt[5]{x} = x^{?}$	4. $\sqrt[4]{8} = 8^?$					
$\sqrt[3]{x} = x^{\frac{1}{3}}$							

1 . . . •••1

This is why a root cancels an exponent:

$$\sqrt{x^2} = (x^2)^{\frac{1}{2}} = x^{(2)(\frac{1}{2})} = x^1 = x^1$$

Generally, we do not go through all of that work. We simply accept that they cancel each other and follow the rule.

The next thing that we need to understand is what a fractional exponent is asking us to do. We all know that x^3 means that we want to multiply by x three times, but what do we want if it says $x^{\frac{1}{3}}$? It's not division...so what do we do? There is no simple straight-forward process that gets your answer every time – it's a thought puzzle. $x^{\frac{1}{3}}$ is asking you to find what would multiply by itself three times to find *x*.

Example							
$256^{\frac{1}{4}} = ?$	$\frac{256 = ? \cdot ? \cdot ? \cdot}{What times itself 4}$	<u>?</u> times will equal 256?	$256^{\frac{1}{4}} = \boxed{4}$				
	$1 \cdot 1 \cdot 1 \cdot 1 = (1)(1)$		2564 = 4				
	$2 \cdot 2 \cdot 2 \cdot 2 = (4)(4)$		because $4 \cdot 4 \cdot 4 \cdot 4 = 256$				
	$3 \cdot 3 \cdot 3 \cdot 3 = (9)(9)$						
	$4 \cdot 4 \cdot 4 \cdot 4 = (16)($	(16) = 256 <i>found it!</i>					
5. $27^{\frac{1}{3}} = ?$ $27 = \underline{? \cdot ? \cdot ?}$							
		times will equal 27?					
		Stop when you find it!	$27^{\frac{1}{3}} =$				
	$1 \cdot 1 \cdot 1 =$	$2 \cdot 2 \cdot 2 =$					
		$4 \cdot 4 \cdot 4 =$					
1	$5 \cdot 5 \cdot 5 =$						
$6.32^{\frac{1}{5}} = ?$	$32 = \underline{? \cdot ? \cdot ? \cdot ?}$	7.7					
		times will equal 32?	1				
		Stop when you find it!	$32^{\frac{1}{5}} =$				
	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 =$	$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = $ $4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = $					
	$3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 =$	$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 =$					
	$5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 =$						
1		1	1				
7. $64^{\frac{1}{3}}$		8. $100,000^{\frac{1}{5}}$	9. 125 3				
10. $81^{\frac{1}{4}}$		11. $729^{\frac{1}{3}}$	12. $64^{\frac{1}{6}}$				
13. $8^{\frac{1}{3}}$		14. $243^{\frac{1}{5}}$					
13. 8 ³		14. 2435	15. $64^{\frac{1}{2}}$				
1							

Now that we know how to simplify our fractional exponents, lets look at how to determine the value of *x* when we know what raising it to a power will equal. For the purposes of this practice, we will assume that all roots are positive

positive.			
Example	Example		
Rewrite the problem using a fractional exponent, then	Rewrite the problem using a fractional exponent, then		
determine the value of <i>x</i> , assuming that <i>x</i> is a positive number.	determine the value of <i>x</i> , assuming that <i>x</i> is a positive number.		
$x^4 = 625$	$x^3 = 512$		
is the same as			
$x \cdot x \cdot x \cdot x = 625,$	$x \cdot x \cdot x = 512,$		
which means that	1		
$x = 625^{\frac{1}{4}}$	$x = 512^{\frac{1}{3}}$		
What times itself 4 times will get me 625 ?	1 1 1 1		
$1 \cdot 1 \cdot 1 \cdot 1 = 1 nope$ $2 \cdot 2 \cdot 2 \cdot 2 = 16 nope$	$1 \cdot 1 \cdot 1 = 1 nope$ $2 \cdot 2 \cdot 2 = 8 nope$		
2 · 2 · 2 · 2 - 10 hope	$2 \cdot 2 \cdot 2 = 0$ hope		
$5 \cdot 5 \cdot 5 \cdot 5 = 625!!$	$8 \cdot 8 \cdot 8 = 512!!$		
So, if $x^4 = 625$, then $x = 625^{\frac{1}{4}} = 5$	So, if $x^3 = 512$, then $x = 512^{\frac{1}{3}} = \boxed{8}$		
16. Rewrite the problem using a fractional exponent, then determine the value of <i>x</i> , assuming that <i>x</i> is a positive	17. Rewrite the problem using a fractional exponent, then determine the value of <i>x</i> , assuming that <i>x</i> is a		
number.	positive number.		
$x^4 = 16$	$x^8 = 1$		
18. Rewrite the problem using a fractional exponent,	19. Rewrite the problem using a fractional exponent,		
then determine the value of <i>x</i> , assuming that <i>x</i> is a	then determine the value of <i>x</i> , assuming that <i>x</i> is a		
positive number. $x^3 = 216$	positive number. $x^2 = 49$		
$x^2 = 216$	$x^{-} = 49$		
20. Rewrite the problem using a fractional exponent,	21. Rewrite the problem using a fractional exponent, then		
then determine the value of <i>x</i> , assuming that <i>x</i> is a positive number.	determine the value of <i>x</i> , assuming that <i>x</i> is a positive number.		
$x^4 = 256$	$x^3 = 1000$		
22. Rewrite the problem using a fractional exponent, then	23. Rewrite the problem using a fractional exponent, then		
determine the value of <i>x</i> , assuming that <i>x</i> is a positive number.	determine the value of <i>x</i> , assuming that <i>x</i> is a positive number.		
$x^4 = 81$	$x^3 = 125$		

$1.\frac{1}{2}$	$2.\frac{1}{2}$		$3.\frac{1}{5}$		$4.\frac{1}{4}$		$5.27^{\frac{1}{3}} = 3$
$6.32^{\frac{1}{5}} = 2$	7.64	$\frac{1}{3} = 4$	8. 100,000	$\frac{1}{5} = 10$	9. $125^{\frac{1}{3}} = 5$		$10.81^{\frac{1}{4}} = 3$
$11.729^{\frac{1}{3}} = 9$	12.6	$4^{\frac{1}{6}} = 2$	$13.8^{\frac{1}{3}} = 2$]	$14.243^{\frac{1}{5}} = 3$		$15.64^{\frac{1}{2}} = 8$
16. $16^{\frac{1}{4}} = 2$		17. $1^{\frac{1}{8}} = 1$		18. $216^{\frac{1}{3}} =$	= 6	19.	$49^{\frac{1}{2}} = 7$
20. $256^{\frac{1}{4}} = 4$		21. $1000^{\frac{1}{3}} = 10$		22. $81^{\frac{1}{4}} =$	3	23.	$125^{\frac{1}{3}} = 5$

Answers