\qquad

Factoring with Perfect Squares to Simplify Radicals

Every number has at least 1 set of factors: 1 times the original number. Most numbers are not prime, which means that they have more than one set of factors. Today, we will be searching for perfect square factors, meaning factors that can be square rooted. We are trying to find factors that are on the this list:

List all of the factors of each number and determine if any of them are perfect.

EXAMPLE: Factor 54.

Perfect?	Factor	Factor	Perfect? No
Yes	1	54	
$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	2	27	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$
	3	18	
No	4	-	
	${ }_{5}$	\bigcirc	
	6	9	Yes
	$\frac{7}{8}$	$\xrightarrow{+}$	
The list has met in the middle - the next number is 9 , which is on the bottom of the $2^{\text {nd }}$ list- so I can stop.			

What are the factor sets with perfect squares?
Yes: $54=(1)(54)$ or (6)(9)

1. Factor 50.

Perfect? | Factor | Factor |
| :---: | :---: |
| | Perfect? |
| | 1 |
| 2 | |
| 3 | |
| 4 | |
| 5 | |

Factor sets with perfect squares:

EXAMPLE: Factor 120.

Perfect?	Factor	Factor	Perfect? No
Yes	1	120	
No	2	60	No
No	3	40	No
Yes	4	30	No
No	5	24	No
No	6	20	No
	7	-	
No	8	15	No
No	10	12	No
	13	\bigcirc	

What are the factor sets with perfect squares?
Yes: $120=(1)(120)$ or $(4)(30)$
2. Factor 76.

Perfect?	Factor
	Factor
1	
2	
3	
4	
5	
7	
8	
9	

Factor sets with perfect squares:
3. Factor 75.

Perfect?	Factor	Factor	Perfect?
	1		
	2		
	3		
	4		
	5		
Since I know that there are no more factors of 75, I can stop here. If I was not sure, I would have to stop until the list meets in the middle.			

Factor sets with perfect squares:
5. Factor 15.

Factor sets with perfect squares:
7. Factor 20.

Factor sets with perfect squares:
4. Factor 40.

Perfect?	Factor	Factor	Perfect?

Factor sets with perfect squares:
6. Factor 24.

Perfect?	Factor	Factor	Perfect?

Factor sets with perfect squares:
8. Factor 28.

Perfect?	Factor	Factor	Perfect?

Factor sets with perfect squares:

9. Factor 18.				
Perfect?	Factor	Factor	Perfect?	

The purpose of this exercise has been to learn to identify perfect square factors in order to split square root radicals into two factors: one that can be simplified and one that cannot. Square roots can be factored, just like regular numbers can. The only difference is that the square root factors will also be square roots.

16. $\sqrt{40}$		17. $\sqrt{15}$	See \#5	18. $\sqrt{24}$	See \#6
	See \#4				
19. $\sqrt{20}$		20. $\sqrt{28}$		21. $\sqrt{18}$	
	See \#7		See \#8		See \#9

If the square root has a negative inside, it's an imaginary number, which means we have to take out the negative by putting i in front of the radical. Then, follow the same process we've been using to simplify the square root.

Your answer should be written as: __? $i \sqrt{__{?}}$

Check your Answers

1. $(1)(50)$ or $(2)(25)$	$2 .(1)(76)$	$3 .(1)(75)$ or $(3)(25)$
$4 .(1)(40)$ or $(4)(10)$	$5 .(1)(15)$	$6 .(1)(24)$ or $(4)(6)$
$7 .(1)(20)$ or $(4)(5)$	$8 .(1)(28)$ or $(4)(7)$	$9 .(1)(18)$ or $(2)(9)$
$10 .(1)(99)$ or $(9)(11)$	$11 .(1)(44)$ or $(4)(11)$	$12 .(1)(8)$ or $(2)(4)$

13. $5 \sqrt{2}$	$14 . \sqrt{76}$	$15.5 \sqrt{3}$
$16.2 \sqrt{10}$	$17 . \sqrt{15}$	$18.2 \sqrt{6}$
$19.2 \sqrt{5}$	$20.2 \sqrt{7}$	$21.3 \sqrt{2}$

22. $3 i \sqrt{11}$
23. $2 i \sqrt{11}$
24. $2 i \sqrt{2}$
