Name: \qquad
Graphing Quadratic Inequalities

Graphing quadratic inequalities is just like graphing any quadratic, with two differences:

1. A quadratic inequality will have shading that is either
above the vertex $(f(x) \geq$ or $f(x)>)$
or below the vertex $(f(x) \leq$ or $f(x)<)$
The shading CANNOT cross the quadratic curve!
2. The curve of the quadratic will be drawn as either

$$
\operatorname{solid}(\geq \text { or } \leq)
$$

or dotted ($>$ or $<$)
The process for determining the details of the quadratic does not change, however. For these examples, I will use the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

EXAMPLE $f(x)=-x^{2}+2 x+8$	y-int: $(0,8)$	
(It's the last number.)		Vertex: $(1,9)$ $\left(x=\frac{-b}{2 a}\right.$, which you plug into the original equation to find $y)$.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(2) \pm \sqrt{(2)^{2}-4(-1)(+8)}}{2(-1)}$		

$x=\frac{-2 \pm \sqrt{4-4(-8)}}{-2}=\frac{-2 \pm \sqrt{4+32}}{-2}=\frac{-2 \pm \sqrt{36}}{-2}=\frac{-2 \pm 6}{-2}$
Zeros: $(-2,0) \&(4,0)$
$x=\frac{-2}{-2} \pm \frac{6}{-2}=\frac{2}{2} \pm \frac{6}{2}=1 \pm 3$
(I used the quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$)

Zeros:
Vertex:

$$
\begin{aligned}
& x=1-3 \text { or } 1+3 \\
& x=-2 \text { or } 4
\end{aligned}
$$

$$
x=\frac{-b}{2 a}=\frac{-(2)}{2(-1)}=\frac{-2}{-2}=1
$$

$$
y=-x^{2}-2 x-8
$$

$$
y=-(1)^{2}+2(-1)-8
$$

$$
y=-1+2+8=1+8
$$

$$
y=9
$$

"OR EQUAL"	NOT "OR EQUAL"
Shaded Inside: [zero, zero]	Shaded Inside: (zero, zero)
Shaded Outside: $(-\infty$, zero] \cup zero, $\infty)$	Shaded Outside: $(-\infty$, zero $) \cup($ zero,$\infty)$

All of the inequalities will have the same information! y-int: $(0,8)$, vertex: $(1,9)$, and zeros: $(-2,0) \&(4,0)$.

EXAMPLEa. $f(x)<-x^{2}+2 x+8$
SOLID or < is a DOTTED Line?
ShadeABOVE or $\boldsymbol{f}(\boldsymbol{x})<\boldsymbol{B E L O W}$ the vertex?

Is it shaded on the INSIDE or OUTSIDE?
Zeros in Interval Notation:
Inside and NOT equal: (zero, zero) $=(-2,4)$
EXAMPLEc. $f(x) \leq-x^{2}+2 x+8$
\leq is a SOLID or DOTTED Line?
ShadeABOVE or $\boldsymbol{f}(\boldsymbol{x}) \leq \boldsymbol{B E L O W}$ the vertex?

Is it shaded on the INSIDE or OUTSIDE?
Zeros in Interval Notation:
Inside and EQUAL: [zero, zero $]=[-2,4]$

EXAMPLEb. $f(x)>-x^{2}+2 x+8$
SOLID or $>$ is a DOTTED Line?
Shade $\boldsymbol{f}(\boldsymbol{x})>$ ABOVE or BELOW the vertex?

Is it shaded on the INSIDE or OUTSIDE?
Zeros in Interval Notation: Outside and NOT equal: $(-\infty$, zero $) \cup($ zero,$\infty)=(-\infty,-2) \cup(4, \infty)$
EXAMPLEd. $f(x) \geq-x^{2}+2 x+8$
\geq is a SOLID or DOTTED Line?
Shade $\boldsymbol{f}(\boldsymbol{x}) \geq$ ABOVE or BELOW the vertex?

Is it shaded on the INSIDE or OUTSIDE?
Zeros in Interval Notation: Outside and EQUAL:

$$
(-\infty, \text { zero }] \cup[\text { zero }, \infty)=(-\infty,-2] \cup[4, \infty)
$$

