\qquad
Quadratic Details Part 1

EXAMPLE

$$
f(x)=3 x^{2}-30 x+33
$$

Vertex: In standard form, you find the vertex with the formula $x=\frac{-b}{2 a^{\prime}}$ then you plug in that x-value to find y.
$x=\frac{-b}{2 a}=\frac{-(-30)}{2(3)}=\frac{30}{6}=5$

$$
x=5
$$

The axis of symmetry is the x-value.
$y=3 x^{2}-30 x+12$
$y=3(5)^{2}-30(5)+12$
$y=3(25)-150+12$
$y=75-150+12=-63$

$$
y=-63
$$

Graph is positive, so it faces Up.
It has a minimum at the y-value.

$$
\text { Vertex: }(5,-63)
$$

y-int: The y-intercept is always the point where $x=0$. In standard form, $x=0$ cancels out everything except c, so you know what the y-intercept is: ($0, c$). If you are unsure, though, you can simply plug in $x=0$.
$x=0$, so y is c

$$
\begin{gathered}
y=3(0)^{2}-30(0)+33 \\
y=0-0+33=33
\end{gathered}
$$

y-int: $(0,33)$
Roots: In standard form (assuming you don't choose to convert to another form), you can determine the roots by using the quadratic formula.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-30) \pm \sqrt{(-30)^{2}-4(3)(33)}}{2(3)}$
$x=\frac{30 \pm \sqrt{900-396}}{6}=\frac{30 \pm \sqrt{504}}{6}$
$x=\frac{30 \pm \sqrt{36} \sqrt{14}}{6}=\frac{30 \pm 6 \sqrt{14}}{6}$
$x=\frac{30}{6} \pm \frac{6 \sqrt{14}}{6}=5 \pm \sqrt{14}$
$x=5 \pm \sqrt{14}$

Vertex	$(5,-63)$
Axis of Symm	$x=5$
Max or Min?	Minimum at $y=-63$
y-int.	$(0,33)$
x-int.'s/ roots / zeros/ solutions	$x=5 \pm \sqrt{14}$

EXAMPLE

$$
g(x)=-2(x+7)(x-1)
$$

Vertex:

In factored form, you find the vertex with the formula $x=\frac{r_{1}+r_{2}}{2}$, then you
plug in that x-value to find y.
$x=\frac{r_{1}+r_{2}}{2}=\frac{(-7)+(1)}{2}=\frac{-6}{2}$
The axis of symmetry is the x-value.
$y=-2(x+7)(x-1)$
$y=-2(-3+7)(-3-1)$
$y=-2(4)(-4)$

$$
y=32
$$

Graph is negative, so it faces down. It has a maximum at the y-value. Vertex: $(-3,32)$
\boldsymbol{y}-int: The y-intercept is always the point where $x=0$. So, plug in $x=0$.
$y=-2(0+7)(0-1)$
$y=-2(7)(-1)=14$
Roots: In factored form, the roots are given to you - they're the numbers in the parentheses with x. Don't forget to witch the signs!
$-2(x+7)(x-1)$, so $x=-7 \& x=1$

Vertex	$(-3,32)$
Axis of Symm	$x=-3$
Max or Min?	Maximum at $y=32$
y-int.	$(0,14)$
xint.'s/ roots/ zeros/ solutions	$x=-7$
$x=1$	

EXAMPLE

$$
h(x)=5(x-3)^{2}+625
$$

Vertex: In vertex form, the vertex is given to you - the x-value is inside the parentheses with x (don't forget to switch the sign), and the y-value is the number added to the end (keep the sign you have).

$$
h(x)=5(x-3)^{2}+625
$$

$x=h$ (switch the sign)

$$
x=+3
$$

The axis of symmetry is the x-value.
$y=k($ keep the sign $)$

$$
y=625
$$

Graph is positive, so it faces Up.
It has a minimum at the y-value.
Vertex: $(3,625)$
y-int: The y-intercept is always the point where $x=0$. So, plug in $x=0$.
$y=5(0-3)^{2}+625$
$y=5(-3)^{2}+625=5(9)+625$
$y=45+625=670 \quad(0,670)$
Roots: The roots are always the points where $y=0$. In vertex form, you simply plug in $y=0$ and use SADMEP to solve.

$$
\begin{gathered}
0=5(x-3)^{2}+625 \\
-625=5(x-3)^{2} \\
-25=(x-3)^{2} \\
\pm \sqrt{25}=(x-3) \\
\pm 5=x-3 \\
3 \pm 5=x \\
x=3 \pm 5
\end{gathered}
$$

Vertex	$(3,625)$
Axis of Symm	$x=3$
Max or Min?	Minimum at $y=625$
y-int.	$(0,670)$
x-int.'s/ roots/ zeros/ solutions	$x=3 \pm 5$

Determine the details of each quadratic.

Answers

$\begin{aligned} & \text { 1. V: }(2,8) \\ & \text { AofS: } x=2 \\ & \text { Max: } y=8 \\ & y \text {-int: }(0,-8) \\ & \text { Roots: } x=2 \pm \sqrt{2} \end{aligned}$	$\begin{aligned} & \text { 2. V: }(-1,27) \\ & \text { AofS: } x=-1 \\ & \text { Max: } y=27 \\ & y \text {-int: }(0,24) \\ & \text { Roots: } x=2 \\ & \quad \text { or } x=-4 \end{aligned}$	3. V: $(1,20)$ AofS: $x=1$ Max: $y=20$ y-int: $(0,19)$ Roots: $x=1 \pm 2 \sqrt{5}$	4. V: $(3,-2)$ AofS: $x=3$ Min: $y=-2$ y-int: $(0,16)$ Roots: $x=4$ or $x=2$	$\begin{aligned} & \text { 5. V: }(-3,0) \\ & \text { AofS: } x=-3 \\ & \text { Min: } y=0 \\ & y \text {-int: }(0,45) \\ & \text { Roots: } x=-3 \end{aligned}$
6. V: $(-5,32)$ AofS: $x=-5$ Min: $y=32$ y-int: $(0,82)$ Roots: $x=-5 \pm 4 i$	7. V: $(-4,0)$ AofS: $x=-4$ Min: $y=0$ y-int: $(0,48)$ Roots: $x=-4$	8. V: $(3,8)$ AofS: $x=3$ Max: $y=8$ y-int: $(0,-10)$ Roots: $x=5$ $\text { or } x=1$	9. V: $(2,-100)$ AofS: $x=2$ Max: $y=-100$ y-int: $(0,-120)$ Roots: $x=2 \pm 2 i \sqrt{5}$	10. $\mathrm{V}:(-5,9)$ AofS: $x=-5$ Max: $y=9$ y-int: $(0,-16)$ Roots: $x=-8$ or $x=-2$
$\begin{aligned} & \text { 11. V: }(-6,-12) \\ & \text { AofS: } x=-6 \\ & \text { Max: } y=12 \\ & y \text {-int: }(0,-96) \\ & \text { Roots: } x=-8 \\ & \quad \text { or } x=-4 \end{aligned}$	12. $\mathrm{V}:(-1,2)$ AofS: $x=-1$ Min: $y=2$ y-int: $(0,3)$ Roots: $x=-1 \pm i \sqrt{2}$	13. V: $(3,-72)$ AofS: $x=3$ Min: $y=-72$ y-int: $(0,-36)$ Roots: $x=3 \pm 3 \sqrt{2}$	14. V: $(-2,32)$ AofS: $x=-2$ Max: $y=32$ y-int: $(0,-8)$ Roots: $x=-2 \mp \frac{2 \sqrt{15}}{5}$	$\begin{aligned} & \text { 15. V: }(2,-16) \\ & \text { AofS: } x=2 \\ & \text { Min: } y=-16 \\ & y \text {-int: }(0,0) \\ & \text { Roots: } x=0 \\ & \quad \text { or } x=4 \end{aligned}$

