Congruent and Similar Triangles

To prove triangles are **congruent**, use one of the five properties below.

Remember, for congruent, and ANGLE pairs have to be congruent (have the same measure), SIDE pairs have to be congruent

SSS	SAS		HL (SSA with 90°)		
When all three sides on the first	When two sides on the first triangle		When two sides on the first triangle		
triangle match all three sides on the	match two sides on the	second <u>and</u>	match two sides on the second and		
second, use SSS.	the angle in between (r	the angle in between (not opposite)		the angle opposite is 90° on both	
	matches, as well, use SA	AS.	triangles, use HL.		
Given: $\overline{BC} \cong \overline{EF}$, $\overline{AC} \cong \overline{DF}$, $\overline{AB} \cong \overline{DE}$					
$B_{ ho}$ $E_{ ho}$	Given: $\overline{BC} \cong \overline{EF}, \overline{AC} \cong$		Given: $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF},$		
= ** = **	$m \angle C = 90^\circ \& m \angle F = 90^\circ$	90°	$m \angle C = 90^\circ \& m \angle F = 90^\circ$	90°	
$C \rightarrow A F \rightarrow D$	$B_{ m N}$ $E_{ m N}$		$B_{ ho}$ $E_{ ho}$		
Prove: $\triangle ABC \cong \triangle DEF$					
	$C \longrightarrow A F \longrightarrow D$		$C \longrightarrow A F \longrightarrow D$ Prove: $\land ABC \cong \land DEF$		
$\angle A \overline{BC} \angle D \overline{EF}$	Prove: $\triangle ABC \cong \triangle DEF$		Prove: $\triangle ABC \cong \triangle DEF$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\angle A$ \overline{BC}	∠D <u>FF</u>	$\angle A$ \overline{BC}	∠D <u>EF</u>	
$\angle C$ \overline{AB} $\angle F$ \overline{DE}	$\angle A$ \overline{BC} $\angle B$ \overline{AC}	$\angle D$ \overline{EF} $\angle E$ \overline{DF}	$\angle B \qquad \overline{AC}$	$\angle E \qquad \overline{DF}$	
Statements Reasons		$\angle F = 90^{\circ}$ \overline{DE}		$\angle F = 90^{\circ} \overline{DE}$	
$\overline{BC} \cong \overline{EF} \qquad \text{Given}$		22			
	Statements	Reasons	Statements	Reasons	
	$m \angle C = 90^{\circ}$	Given	$m \angle C = 90^{\circ}$	Given	
$\overline{AB} \cong \overline{DE}$ Given	$m \angle F = 90^{\circ}$	Given	$m \angle F = 90^{\circ}$	Given	
$\triangle ABC \cong \triangle DEF \qquad SSS$	$m \angle C = m \angle F$	Subst.	$m \angle C = m \angle F$	Subst.	
	$\angle C \cong \angle F$	Def. ≅	$\angle C \cong \angle F$	Def. ≅	
	$\overline{BC} \cong \overline{EF}$	Given	$\overline{AB} \cong \overline{DE}$	Given	
	$\overline{AC} \cong \overline{DF}$			Given	
	$\triangle ABC \cong \triangle DEF \qquad SAS$		$\triangle ABC \cong \triangle DEF$	HL	

ASA When two angles on the first triangle match two angles When two angles on the first triangle match two angles on the second <u>and</u> the side in between (not opposite) on the second <u>and</u> the opposite side (of one of the matches, as well, use ASA. matching angle sets) on both matches, use AAS.

Given:
$$\overline{AB} \cong \overline{DE}, \angle A \cong \angle D \& \angle B \cong \angle E$$

 $B \qquad E$
 $C \qquad A \qquad F \qquad D$

Prove: $\triangle ABC \cong \triangle DEF$

$\angle A$	BC	∠D	
∠B	\overline{AC}	∠E	
∠C	\overline{AB}	$\angle F$	

Statements	Reasons
$\overline{AB} \cong \overline{DE}$	Given
$\angle A \cong \angle D$	Given
$\angle B \cong \angle E$	Given
$\triangle ABC \cong \triangle DEF$	ASA

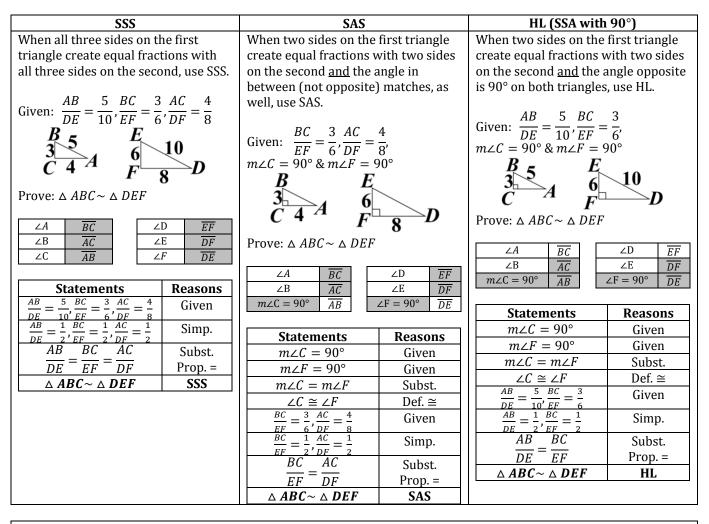
Given:
$$\overline{AB} \cong \overline{DE}, \angle A \cong \angle D \& \angle B \cong \angle E$$

AAS

Prove: $\triangle ABC \cong \triangle DEF$

EF DF

DE


$\angle A$	\overline{BC}	∠D	\overline{EF}
∠B	\overline{AC}	∠E	\overline{DF}
∠C	\overline{AB}	$\angle F$	DE

Statements	Reasons
$\overline{AC} \cong \overline{DF}$	Given
$\angle A \cong \angle D$	Given
$\angle B \cong \angle E$	Given
$\triangle ABC \cong \triangle DEF$	AAS

<u>To prove triangles are **similar**</u>, use one of the five properties below.

Remember, for similar, ANGLE pairs have to be congruent (have the same measure), **but** SIDE pairs have to create equal scale fractions

<u>If the triangles are congruent, then they are automatically similar, as well!</u>

AA

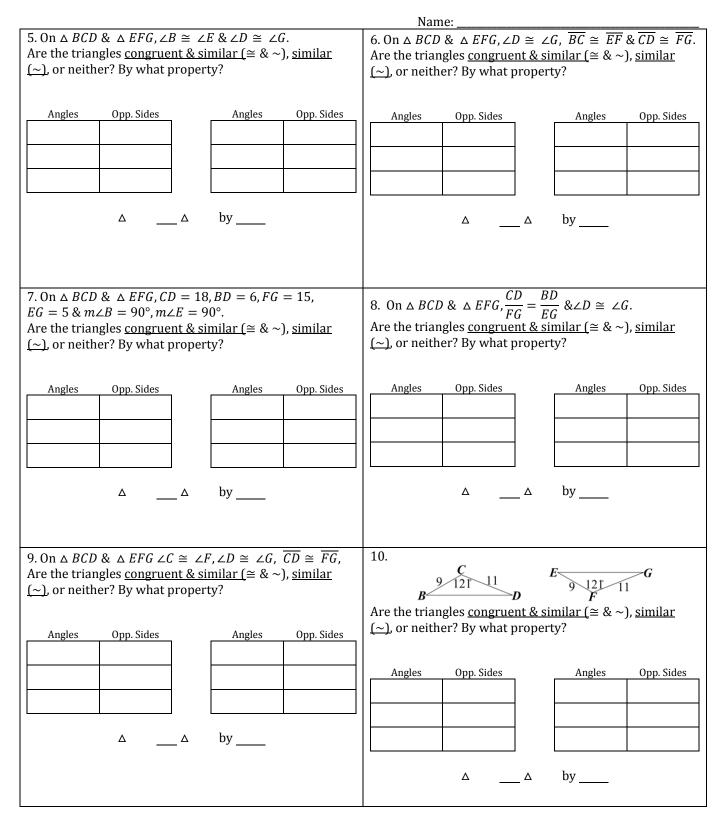
When two angles on the first triangle match two angles on the second, use AA.

Given: $\angle A \cong \angle D \& \angle B \cong \angle E$

Prove: $\triangle ABC \sim \triangle DEF$

$\angle A$	BC
∠B	ĀĊ
∠C	\overline{AB}

∠D	EF
∠E	\overline{DF}
$\angle F$	DE


Statements	Reasons
$\angle A \cong \angle D$	Given
$\angle B \cong \angle E$	Given
$\triangle ABC \sim \triangle DEF$	AA

Name: _

Congruent and Similar Triangles

For each triangle, create a small-medium-large table (if you do not know the size of the angles, then put the angles of the first triangle in any order, then match that order for the second triangle). Then, determine if the triangles are congruent & similar, only similar or neither and by what property.

triangles are con	ngruent & simi	lar, only sin	nilar or neith		at property.			
EXAMPLE:				EXAMPLE:			_	
$On \bigtriangleup LMN \bigtriangleup PQR, \angle L \cong \angle P, \angle M \cong \angle Q,$			On $\triangle LMN \triangle PQR$, $m \angle N = 70^\circ$, $m \angle R = 70^\circ$,					
	LM = 8 & PQ = 24. Are the triangles <u>congruent &</u>			LN = 8, $MN = 7$, $PR = 24 & QR = 21$. Are the triangles				
	similar (\cong & ~), similar (~), or neither? By what				<u>similar (</u> ≅ & ~), <u>simila</u>	<u>ar (~)</u> , or n	either? By
property?				what proper	ty?			
Angles Op	p. Sides	Angles	Opp. Sides	Angles	Opp. Sides		Angles	Opp. Sides
$\angle L (\cong \angle P)$	MN	$(\angle L \cong) \angle P$	\overline{QR}	$\angle L$	MN = 7		∠ P	QR = 21
$\angle M$ ($\cong \angle Q$)	LN	$(\angle M \cong) \angle Q$	\overline{PR}	$\angle M$	LN = 8		$\angle Q$	PR = 24
$\angle N$ L1	M = 8	$\angle R$	PQ = 24	$m \angle N = 70^{\circ}$	\overline{LM}	n	$n \angle R = 70^{\circ}$	\overline{PQ}
There are 2 congr AA. AA is used to congruence.		y, but <i>is not e</i>		for congruent similarity, th fractions $\left(\frac{sm}{sm}\right)$ $\frac{MN}{QR}$ The side fract	r 1 congruent at a ce or for similar en we need to reduce the end to reduce the	arity. If use the see if the <u>LN</u> <i>P(</i> <i>me, so w</i> <i>site (SA</i> .	we want to sides to create by are the s $\frac{A}{Q} = \frac{8 \div 8}{24 \div 8}$ we have 2 si	b prove eate scale ame. $\frac{1}{3} = \frac{1}{3}$
					$\triangle LMN _ \sim$	$\triangle PQR$	by <u>SAS</u>	
1. On △ <i>BCD</i> & △	$EFG. \angle C \cong \angle F$	$\overline{CD} \cong \overline{FG} \&$	$\overline{BC} \cong \overline{EF}.$	2. On △ <i>BCD</i>	$\frac{\triangle LMN \ \sim}{\& \ \triangle EFG, m \angle B}$	$B = 90^{\circ}$	$, m \angle E = 9$	0°,
Are the triangles <u>congruent & similar</u> (\cong & \sim), <u>similar</u>				$m \angle G = 20^\circ \& \overline{I}$				
(∼), or neither? B	-				<u>similar (</u> ≅ & ~			0
Angles Op	p. Sides	Angles	Opp. Sides	Angles	Opp. Sides		Angles	Opp. Sides
	Δ	by			Δ	∆ b	У	
3. On △ <i>BCD</i> & △			= 8,	4. On <i>△ BCD</i>	$\& \triangle EFG, m \angle C$	$C = 30^{\circ}$	$m \angle F = 3$	0°,
FG = 12, EG = 9		,			$m \angle G = 40^{\circ} \overline{B}$			-
<u>& similar (</u> ≅ & ~)					gles <u>congruent</u>			. similar
property?		5			er? By what pro			, <u></u>
Angles Op	p. Sides	Angles	Opp. Sides	Angles	Opp. Sides		Angles	Opp. Sides
	·				opp. sides			opp. sides
	J L	,				<u> </u>		
Δ	ΔΔ	by			Δ	∆ b	у	

Congruent and Similar Triangles Answers

1. $\triangle BCD \cong \triangle EFG$ by SAS	$2. \triangle BCD \cong \triangle EFG$ by ASA	3. $\triangle BCD \sim \triangle EFG$ by SSS
4. $\triangle BCD \cong \triangle EFG$ by AAS	5. $\triangle BCD \sim \triangle EFG$ by AA	6. <i>Neither</i> – there is no evidence of
		congruence or similarity
7. $\triangle BCD \sim \triangle EFG$ by HL	8. $\triangle BCD \sim \triangle EFG$ by SAS	9. $\triangle BCD \cong \triangle EFG$ by ASA
$10. \triangle BCD \cong \triangle EFG$ by SAS		