Congruent and Similar Triangles

To prove triangles are congruent, use one of the five properties below.
Remember, for congruent, ANGLE pairs have to be congruent (have the same measure), and SIDE pairs have to be congruent

To prove triangles are similar, use one of the five properties below.
Remember, for similar, ANGLE pairs have to be congruent (have the same measure),
but SIDE pairs have to create equal scale fractions

If the triangles are congruent, then they are automatically similar, as well!

SSS			
When all three sides on the first triangle create equal fractions with all three sides on the second, use SSS.			
Given: $\frac{A B}{D E}=\frac{5}{10}, \frac{B C}{E F}=\frac{3}{6}, \frac{A C}{D F}=\frac{4}{8}$			
Prove: $\triangle A B C \sim \triangle D E F$			
$\angle A$	$\overline{B C}$	$\angle \mathrm{D}$	$\overline{E F}$
$\angle B$	$\overline{A C}$	$\angle \mathrm{E}$	$\overline{D F}$
$\angle \mathrm{C}$	$\overline{A B}$	$\angle F$	$\overline{D E}$

Statements	Reasons
$\frac{A B}{D E}=\frac{5}{10}, \frac{B C}{E F}=\frac{3}{6}, \frac{A C}{D F}=\frac{4}{8}$	Given
$\frac{A B}{D E}=\frac{1}{2}, \frac{B C}{E F}=\frac{1}{2}, \frac{A C}{D F}=\frac{1}{2}$	Simp.
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$	Subst.
Prop. $=$	
$\triangle A B C \sim \triangle D E F$	SSS

SAS
When two sides on the first triangle
create equal fractions with two sides
on the second and the angle in
between (not opposite) matches, as
well, use SAS.

Given: $\frac{B C}{E F}=\frac{3}{6}, \frac{A C}{D F}=\frac{4}{8}$, $m \angle C=90^{\circ} \& m \angle F=90^{\circ}$

Prove: $\triangle A B C \sim \triangle D E F$

$\angle A$	$\overline{B C}$			
$\angle \mathrm{~B}$	$\overline{A C}$			
$m \angle \mathrm{C}=90^{\circ}$	$\overline{A B}$	\quad	$\angle \mathrm{D}$	$\overline{E F}$
:---:	:---:			
$\angle \mathrm{~F}=90^{\circ}$	$\overline{D F}$			

Statements	Reasons
$m \angle C=90^{\circ}$	Given
$m \angle F=90^{\circ}$	Given
$m \angle C=m \angle F$	Subst.
$\angle C \cong \angle F$	Def. \cong
$\frac{B C}{E F}=\frac{3}{6}, \frac{A C}{D F}=\frac{4}{8}$	Given
$\frac{B C}{E F}=\frac{1}{2}, \frac{A C}{D F}=\frac{1}{2}$	Simp.
$\frac{B C}{E F}=\frac{A C}{D F}$	Subst.
Prop. $=$	
$\triangle \boldsymbol{A B C} \sim \Delta \boldsymbol{D E F}$	SAS

HL (SSA with $\mathbf{9 0}^{\circ}$)
When two sides on the first triangle create equal fractions with two sides on the second and the angle opposite is 90° on both triangles, use HL.

Given: $\frac{A B}{D E}=\frac{5}{10}, \frac{B C}{E F}=\frac{3}{6}$,
$m \angle C=90^{\circ} \& m \angle F=90^{\circ}$

Prove: $\triangle A B C \sim \triangle D E F$

$\angle A$	$\overline{B C}$			
$\angle \mathrm{~B}$	$\overline{A C}$			
$m \angle \mathrm{C}=90^{\circ}$	$\overline{A B}$	\quad	$\angle \mathrm{D}$	$\overline{E F}$
:---:	:---:			
$\angle \mathrm{E}$	$\overline{D F}$			
$\angle \mathrm{~F}=90^{\circ}$	$\overline{D E}$			

Statements	Reasons
$m \angle C=90^{\circ}$	Given
$m \angle F=90^{\circ}$	Given
$m \angle C=m \angle F$	Subst.
$\angle C \cong \angle F$	Def. \cong
$\frac{A B}{D E}=\frac{5}{10}, \frac{B C}{E F}=\frac{3}{6}$	Given
$\frac{A B}{D E}=\frac{1}{2}, \frac{B C}{E F}=\frac{1}{2}$	Simp.
$\frac{A B}{D E}=\frac{B C}{E F}$	Subst.
$\triangle \boldsymbol{A B C} \sim \triangle \boldsymbol{D E F}$	Prop. $=$

AA			
When two angles on the first triangle match two angles on the second ${ }_{\text {u }}$ use AA.			
Given: $\angle A \cong \angle D \& \angle B \cong \angle E$			
Prove: $\triangle A B C \sim \triangle D E F$			
$\angle A$	$\overline{B C}$	$\angle \mathrm{D}$	$\overline{E F}$
$\angle B$	$\overline{A C}$	$\angle \mathrm{E}$	$\overline{D F}$
$\angle \mathrm{C}$	$\overline{A B}$	$\angle F$	$\overline{D E}$

Statements	Reasons
$\angle A \cong \angle D$	Given
$\angle B \cong \angle E$	Given
$\triangle \boldsymbol{A B C} \sim \triangle \boldsymbol{D E F}$	AA

For each triangle, create a small-medium-large table (if you do not know the size of the angles, then put the angles of the first triangle in any order, then match that order for the second triangle). Then, determine if the triangles are congruent \& similar, only similar or neither and by what property.

EXAMPLE:

On $\triangle L M N \triangle P Q R, \angle L \cong \angle P, \angle M \cong \angle Q$,
$L M=8 \& P Q=24$. Are the triangles congruent \& similar ($\cong \& \sim$), similar (\sim), or neither? By what property?

Angles	Opp. Sides
$\angle L(\cong \angle P)$	$\overline{M N}$
$\angle M(\cong \angle Q)$	$\overline{L N}$
$\angle N$	$L M=8$

Angles	Opp. Sides
$(\angle L \cong \angle P$	$\overline{Q R}$
$(\angle M \cong) \angle Q$	$\overline{P R}$
$\angle R$	$P Q=24$

There are 2 congruent angle pairs, which means we have AA. AA is used to prove similarity, but is not enough for congruence.
$\triangle L M N \xrightarrow[\sim]{\sim} \triangle P Q R$ by $\underline{\mathbf{A A}}$

EXAMPLE:

On $\triangle L M N \triangle P Q R, m \angle N=70^{\circ}, m \angle R=70^{\circ}$,
$L N=8, M N=7, P R=24 \& Q R=21$. Are the triangles congruent \& similar ($\cong \& \sim$), similar (\sim), or neither? By what property?

Angles	Opp. Sides
$\angle L$	$M N=7$
$\angle M$	$L N=8$
$m \angle N=70^{\circ}$	$\overline{L M}$

Angles	Opp. Sides
$\angle P$	$Q R=21$
$\angle Q$	$P R=24$
$m \angle R=70^{\circ}$	$\overline{P Q}$

There is only 1 congruent angle pair, which is not enough for congruence or for similarity. If we want to prove similarity, then we need to use the sides to create scale fractions $\left(\frac{\text { small }}{\text { small }} \&\right.$ large large $)$ to see if they are the same.

$$
\frac{M N}{Q R}=\frac{7}{21} \div 7 \div \frac{1}{3} \quad \frac{L M}{P Q}=\frac{8}{24} \div 8 \div 8=\frac{1}{3}
$$

The side fractions are the same, so we have 2 side pairs and 1 angle pair that is not opposite (SAS).

$\angle L$	$M N=7$			
$\angle M$	$L N=8$			
$m \angle N=70^{\circ}$	$\overline{L M}$	\quad	$\angle P$	$Q R=21$
:---:	:---:			
$\angle Q$	$P R=24$			

$$
\triangle L M N \sim \triangle P Q R \text { by } \underline{\underline{\text { SAS }}}
$$

2. On $\triangle B C D$ \& $\triangle E F G, m \angle B=90^{\circ}, m \angle E=90^{\circ}$, $m \angle D=20^{\circ}, m \angle G=20^{\circ} \& \overline{E G} \cong \overline{B D}$. Are the triangles congruent \& similar ($\cong \& \sim$), similar (\sim), or neither? By what property?

Angles	Opp. Sides

$\frac{\Delta}{\text { 3. } 0 \mathrm{n} ~} \triangle B C D \& \Delta E F G, \quad$ by $=4, B D=6, C D=8$, $F G=12, E G=9 \& E F=6$. Are the triangles congruent \& similar ($\cong \& \sim$), similar (\sim), or neither? By what property?

$\Delta \quad \Delta \quad$ by
4. $0 \mathrm{n} \triangle B C D$ \& $\triangle E F G, m \angle C=30^{\circ}, m \angle F=30^{\circ}$, $m \angle D=40^{\circ}, m \angle G=40^{\circ} \overline{B D} \cong \overline{E G}$.
Are the triangles congruent \& similar ($\cong \& \sim$), similar (\sim), or neither? By what property?

Name:
5. On $\triangle B C D \& \triangle E F G, \angle B \cong \angle E \& \angle D \cong \angle G$.

Are the triangles congruent \& similar ($\cong \& \sim$), similar (\sim) or neither? By what property?

Angles	Opp. Sides

Angles	Opp. Sides

Δ \qquad Δ by \qquad

Δ \qquad Δ
by \qquad
8. On $\triangle B C D \& \triangle E F G, \frac{C D}{F G}=\frac{B D}{E G} \& \angle D \cong \angle G$.

Are the triangles congruent \& similar ($\cong \& \sim$), similar (\sim) or neither? By what property?

$\Delta \quad-\quad \Delta \quad$ by
10.

Are the triangles congruent \& similar ($\cong \& \sim$), $\underline{\text { similar }}$ (\sim) or neither? By what property?

$\Delta \quad _\Delta \quad$ by

\qquad

Congruent and Similar Triangles Answers

$1 . \triangle B C D \cong \triangle E F G$ by SAS	$2 . \Delta B C D \cong \triangle E F G$ by ASA	$3 . \Delta B C D \sim \triangle E F G$ by SSS
$4 . \triangle B C D \cong \triangle E F G$ by AAS	$5 . \triangle B C D \sim \triangle E F G$ by AA	6. Neither - there is no evidence of congruence or similarity
$7 . \triangle B C D \sim \triangle E F G$ by HL	$8 . \Delta B C D \sim \triangle E F G$ by SAS	$9 . \Delta B C D \cong \triangle E F G$ by ASA
$10 . \triangle B C D \cong \triangle E F G$ by SAS		

