\qquad Per: \qquad Unit 5 Review - Pythagorean Theorem

	EXAMPLE - Determine the value of x. Write your answer as a simplified radical.	EXAMPLE - Determine the value of x. Write your answer as a simplified radical.
Step 1: Know your formula.	$a^{2}+b^{2}=c^{2}$	$a^{2}+b^{2}=c^{2}$
Step 2: Identify the hypotenuse (side across from 90°). The number or x on that side is c. $a^{2}+b^{2}=h y p^{2}$	$\underbrace{\boldsymbol{x}}_{a^{2}+b^{2}=(25)^{2}}$	
Step 3: Plug the other two sides in for a \& b (it doesn't matter which is which).	$x^{2}+(15)^{2}=(25)^{2}$	$(18)^{2}+(28)^{2}=x^{2}$
Step 4: Simplify the squares.	$x^{2}+225=625$	$324+784=x^{2}$
Step 5: If the numbers are on the same side of the equal sign, add them up. If the numbers are on different sides, subtract the number away from x^{2}.	$\frac{-225-225}{x^{2}=400}$	$1108=x^{2}$
Step 6: Square root and simplify by creating a factor tree. Remember, singles don't get to go out (of the $\sqrt{ }$), but one member of a couple will sacrifice itself for the other to get free.		$$
Step 7: If needed, multiply the numbers that are in front of the $\sqrt{ }$ and multiply the numbers that are inside the $\sqrt{ }$.	$x=20$	

1. Determine the value of x. Write your answer as a simplified radical.

2. Determine the value of x. Write your answer as a simplified radical.

3. Determine the value of x. Write your answer as a simplified radical.

4. Determine the value of x. Write your answer as a simplified radical.	5. Determine the value of x. Write your answer as a simplified radical.	6. Determine the value of x. Write your answer as a simplified radical.
7. Determine the value of x. Write your answer as a simplified radical.	8. Determine the value of x. Write your answer as a simplified radical.	9. Determine the value of x. Write your answer as a simplified radical.
10. Determine the value of x. Write your answer as a simplified radical.	11. Determine the value of x. Write your answer as a simplified radical.	12. Determine the value of x. Write your answer as a simplified radical.
13. Determine the value of x. Write your answer as a simplified radical. \sum_{x}^{9}	14. Determine the value of x. Write your answer as a simplified radical.	15. Determine the value of x. Write your answer as a simplified radical.

Unit 5 Review - Special Triangles

$1 \cdot x=2 \sqrt{29}$	$2 \cdot x=2 \sqrt{7}$	$3 \cdot x=6 \sqrt{11}$	4. $x=2 \sqrt{30}$	$5 \cdot x=2 \sqrt{65}$
$6 \cdot x=10$	$7 \cdot x=4 \sqrt{3}$	$8 \cdot x=2 \sqrt{97}$	9. $x=\sqrt{51}$	$10 \cdot x=4 \sqrt{13}$
$11 \cdot x=\sqrt{149}$	$12 \cdot x=2 \sqrt{101}$	$13 \cdot x=9 \sqrt{2}$	$14 \cdot x=2 \sqrt{21}$	$15 \cdot x=9$

