Pythagorean Theorem

Figures are not drawn to scale

Solving for a Missing Side without using angles Determine *BC*.

$$a^2 + b^2 = c^2$$

c is the hyp (a and b are adj & opp).

AC is the hyp, so c = 10. I choose to make a = 2 & b = BC.

$$(2)^{2} + (BC)^{2} = (10)^{2}$$

$$4 + (BC)^{2} = 100$$

$$(BC)^{2} = 98$$

$$BC = \sqrt{98}$$

 ${\it Simplify the \ radical} \ \underline{\it as \ much \ as \ you \ can \ (see \ right)}.$

$$BC = 7\sqrt{2}$$

Simplifying Radicals

98 anything that 2.49 ← multiplies to 98 7.7 ← multiplies to 49

 $\sqrt{98} = \sqrt{2}$ In a couple, one must sacrifice itself so the get to go out other can be free.

Once the sacrifice is made,

Once the sacrifice is made, multiply to simplify, if needed.

Shortcut for Pythagorean Triples

If you notice that two of a triangle's sides are in a Pythagorean Triple , then the third side must be the third number. The most commonly used triples are:

3.4.

5, 12, 13

8, 15, 17

7, 24, 25

3, 4, 5	5, 12, 13 8, 15, 17	7, 24, 25
1. Determine DE. D 8 F 14	2. Determine HK . K 5 G	3. Determine MN . L 5 M N
4. Determine <i>QR</i> . P 3 R	5. Determine TV. S 8 T	6. Determine BD. 21 9 B D
7. Determine EF. E 14 F 12 G	8. Determine KL. H 4 16 K L	9. Determine <i>PM</i> . N 15 6 M

Pythagorean Theorem Answers

1. $DE = 2\sqrt{33}$	2. $HK = 5\sqrt{5}$	3. MN = 12	4. $QR = 3\sqrt{15}$	$5. TV = 4\sqrt{5}$
6. $BD = 6\sqrt{10}$	7. $EF = 2\sqrt{13}$	8. $KL = 4$	<u>15</u>	9. $PM = 3\sqrt{21}$