\qquad Per: \qquad
Unit 5 Review - Special Triangles
30-60-90

| EXAMPLE - when you have the | EXAMPLE - when you have the side |
| :--- | :--- | hypotenuse (across from 90°):

Step 1: Divide the side value by 2.
That gives you the answer for the side across from 30°.

$$
a=30 \div 2=15
$$

Step 2: Using the side value you just found, multiply by $\sqrt{3}$.

That gives you the answer for the side across from 60°.

1. Find the length of all missing sides. Write your answer as a simplified radical.

across from 60° :

Step 1: Divide the side value by $\sqrt{3}$.
That gives you the answer for the side across from 30°

$$
b=6 \sqrt{3} \div \sqrt{3}=6
$$

Step 2: Using the side value you just found, multiply by 2 .

That gives you the answer for the hypotenuse (the side across from 90°).

$$
c=6(2)=12
$$

2. Find the length of all missing sides. Write your answer as a simplified radical.

EXAMPLE - when you have the side across from 30° :

Step 1: Multiply the side value by $\sqrt{3}$.
That gives you the answer for the side across from 60°

$$
b=19(\sqrt{3})=19 \sqrt{3}
$$

Step 2: Using the side value you started with, multiply by 2 .

That gives you the answer for the hypotenuse (the side across from 90°).

$$
c=19(2)=38
$$

3. Find the length of all missing sides. Write your answer as a simplified radical.

Mixed Practice.

4. Find the length of all missing sides. Write your answer as a simplified radical.	5. Find the length of all missing sides. Write your answer as a simplified radical.	6. Find the length of all missing sides. Write your answer as a simplified radical.
7. Find the length of all missing sides. Write your answer as a simplified radical.	8. Find the length of all missing sides. Write your answer as a simplified radical.	9. Find the length of all missing sides. Write your answer as a simplified radical.
10. Find the length of all missing sides. Write your answer as a simplified radical.	11. Find the length of all missing sides. Write your answer as a simplified radical.	12. Find the length of all missing sides. Write your answer as a simplified radical.

\qquad Per: \qquad
45-45-90
EXAMPLE - when you have the hypotenuse (across from 90°): \quad EXAMPLE - when you have the side across from 45° :

Step 1: Divide the side value by $\sqrt{2}$.
That gives you the answer for both sides across from 45°.

$$
a=30 \sqrt{2} \div \sqrt{2}=30 \& b=30
$$

Step 1: The other side across from a 45° angle is the same.

$$
b=6
$$

Step 2: Multiply by $\sqrt{2}$.
That gives you the answer for the hypotenuse (the side across from 90°).

$$
c=6(\sqrt{2})=6 \sqrt{2}
$$

14. Find the length of all missing sides. Write your answer as a simplified radical.

Mixed Practice.

15. Find the length of all missing sides. Write your answer as a simplified radical.

16. Find the length of all missing sides. Write your answer as a simplified radical.
17. Find the length of all missing sides. Write your answer as a simplified radical.
 missing sides. Write your answer as a simplified radical.

17. Find the length of all missing sides. Write your answer as a simplified radical.	18. Find the length of all missing sides. Write your answer as a simplified radical.
21. Find the length of all missing sides. Write your answer as a simplified radical.	22. Find the length of all missing sides. Write your answer as a simplified radical.

Unit 5 Review - Special Triangles

$1 \cdot a=9 \& b=9 \sqrt{3}$	$2 \cdot a=16 \& c=32$	$3 \cdot b=12 \sqrt{3} \& c=24$	$4 \cdot a=14 \& c=28$
$5 \cdot a=19 \sqrt{3} \& b=19$	$6 \cdot a=13 \sqrt{3} \& c=26$	$7 \cdot b=24 \sqrt{3} \& c=48$	$8 \cdot b=35 \& c=70$
$9 \cdot a=1 \& b=\sqrt{3}$	$10 \cdot a=10 \sqrt{3} \& c=20$	$11 \cdot a=4 \& c=8$	$12 \cdot a=11 \& b=11 \sqrt{3}$
$13 \cdot a=16 \& b=16$	$14 \cdot b=12 \& c=12 \sqrt{2}$	$15 \cdot a=18 \& c=18 \sqrt{2}$	$16 \cdot a=23 \& b=23$
$17 \cdot a=13 \& b=13$	$18 \cdot b=38 \& c=38 \sqrt{2}$	$19 \cdot a=25 \& b=25$	$20 \cdot a=35 \& b=35$
$21 \cdot a=10 \& c=10 \sqrt{2}$	$22 \cdot a=4 \& b=4$		

