\qquad
Using Scale in Similar Triangles
Scale is a vital part of how similar figures work. You cannot accurately compare the two triangles without it. Scale tells you how much bigger or smaller the new figure became. So, though it is absolutely possible to determine side measures without scale, for this handout, our focus will be on two things: 1. determining the scale, and 2 . using the scale to determine side measures.

To use your scale, you must first set up your three scale fractions. There are a few ways to do this, but the two of the easier ways are shown below:

Creating Scale Fractions for $\triangle G H K \sim \triangle N M L$
Option A: List the sides in order, and make the fractions \quad Option B: put the first triangle on top of the fraction, then
using what's next to each other.
$\triangle G H K \sim \Delta N M L$
1st two letters: $G H \sim N M$...turned into a fraction: $G H / N M$ scale fraction: $\frac{G H}{N M} \quad \frac{\text { First } \Delta}{\text { Second } \Delta}=\frac{\Delta G H K}{\Delta N M L}$
last two letters: $H K \sim M L$...turned into a fraction: $H K / M L$ scale fraction: $\frac{H K}{M L}$
out two letters: $G K \sim N L$...turned into a fraction: $G K / N L$ scale fraction: $\frac{G K}{N L}$
Set them equal to each other:

$$
\frac{G H}{N M}=\frac{H K}{M L}=\frac{G K}{N L}
$$

Create a scale fraction equation for each triangle set.

$1 . \Delta S L U \sim \triangle R P S$	$2 . \Delta G Q A \sim \triangle E H I$	$3 . \Delta \mathrm{WXC} \sim \triangle Z T D$
$4 . \Delta M Y K \sim \triangle J B R$	$5 . \Delta P V F \sim \triangle N S Z$	$6 . \Delta L A U \sim \Delta G H S$

To determine the scale, plug in the given information (to the fraction that goes with that information) and simplify.

Example: $\triangle S L U \sim \triangle R P S$ $L U=4 \& P S=12$. What is the scale? $\begin{gathered} \frac{S L 甘}{R P \S}=\frac{\frac{S L U}{R P S}=\frac{S \sharp U}{R \sharp S}}{\frac{S L}{R P}=\frac{L U^{*}}{P S^{*}}=\frac{S U}{R S}} \\ \text { Scale }=\frac{L U}{P S}=\frac{4}{12}=\frac{4 \div 4}{12 \div 4}=\frac{1}{4} \end{gathered}$	7. $\triangle G Q A \sim \triangle E H I$ $G A=24 \& E I=9$. What is the scale?	8. \triangle WXC $\sim \triangle Z T D$ $W X=17 \& Z T=5$. What is the scale?
9. $\triangle M Y K \sim \triangle J B R$ $M K=18 \& J R=28$. What is the scale?	$\begin{aligned} & \text { 10. } \triangle P V F \sim \triangle N S Z \\ & P V=3 \& N S=6 . \text { What is the scale? } \end{aligned}$	11. $\triangle L A U \sim \triangle G H S$ $A U=8 \& H S=4$. What is the scale?

Sometimes, you are asked to determine if there is a scale (meaning, if the triangles are similar). To find out, you would substitute into more than one scale fraction.

If the simplified fractions are equal, then that is your scale.
If the simplified fractions are NOT equal, then that is NOT your scale, because they are NOT SIMILAR.
Determine the scale for each fraction, if there is one. If the scales are not equal, then write "NOT SIMILAR."
Example: On $\triangle P H O \& \triangle N E D, P H=15, H O=18, N E=20, P O=12, E D=18 \& N D=16$. What is the scale?
Scale Fractions: $\frac{P H \theta}{N E D}=\frac{P H O}{N E D}=\frac{P H O}{N E D}$
Scale Fractions: $\frac{P H^{*}}{N E^{*}}=\frac{H O^{*}}{E D^{*}}=\frac{P O^{*}}{N D^{*}} \quad$ Since I have every side, I will plug them all in: $\frac{15}{20}=\frac{18}{18}=\frac{12}{16}$ Now, I need to simplify each fraction as much as possible: $\frac{15 \div 5}{20 \div 5}=\begin{gathered}18 \div 18 \\ 18 \div 18\end{gathered}=\frac{12 \div 4}{16 \div 4} 4 \frac{3}{4} \neq \frac{1}{1} \neq \frac{3}{4}$

Because the three fractions are not the same, there is no scale, which means that the triangles are NOT SIMILAR.

12. On $\triangle N M C \& \triangle W R K$, $W K=16, N M=10, M C=5$ $N C=10, R K=8 \& W R=16$. What is the scale?	13. On $\triangle B X K$ \& $\triangle D Z P$, $\begin{aligned} & B X=30, B K=36, Z P=28, \\ & X K=24, D Z=35 \& D P=42 . \text { What } \end{aligned}$ is the scale?	14. On $\triangle F H S \& \triangle L Y R$, $F H=22, F S=22, Y R=11$ $L Y=10, H S=5 \& L R=15$. What is the scale?
15. On $\triangle S V D \& \triangle O N S$, $N S=4, O S=18, O N=16$ $S V=24, V D=21 \& S D=27$. What is the scale?	16. On $\triangle A E T$ \& $\triangle N M W$, $A E=5, E T=5, N M=4, A T=5$, $M W=4 \& N W=4$. What is the scale?	17. On $\triangle B G V \& \triangle Q C K$, $B G=40, Q K=5, G V=20$ $B V=50, Q C=4 \& C K=2$. What is the scale?
18. On $\triangle H B Q \& \triangle E S Z$, $E Z=13, S Z=26, E S=26$, $H B=16, B Q=16, H Q=8$. What is the scale?	19. On $\triangle F G H \& \triangle T V W$, $G H=5, F H=1, T W=5$, $V W=15, T V=3 \& F G=1$. What is the scale?	$\begin{aligned} & \text { 20. On } \triangle Y V M \& \triangle W R A \\ & Y V=10, W R=120, V M=7, \\ & R A=84, Y M=9 \& W A=108 . \text { What } \end{aligned}$ is the scale?

