\qquad

To identify connecting angles, look for the letter that the two sides share.
$\overline{A B} \& \overline{A C} \quad \overline{A B} \& \overline{B C} \quad \overline{D E} \& \overline{E F}$
are connected by $\angle A$, because it's the are connected by $\angle B$. are connected by $\angle E$.
letter that's in both of them.
Identify the angle that connects each side pair.

1. $\overline{B C} \& \overline{A C}$	2. $\overline{C D} \& \overline{B D}$	3. $\overline{E F} \& \overline{F G}$	$4 . \overline{H I} \& \overline{J I}$
$5 . \overline{K L} \& \overline{L M}$	$6 . \overline{N P} \& \overline{R P}$	$7 . \overline{S T} \& \overline{S U}$	$8 . \overline{V X} \& \overline{X Y}$

Side fractions are connected by a matching angle pair.

$$
\frac{A B}{D E}=\frac{B C}{E F}
$$

are connected by $\angle B \& \angle E$, because the top shares B \& the bottom, E.

$$
\frac{C D}{E F}=\frac{B C}{G E}
$$

are connected by $\angle C \& \angle E$.

$$
\frac{K L}{N P}=\frac{L M}{P R}
$$

are connected by $\angle L \& \angle P$.

Identify the angles that connect each side fraction pair.

9. $\frac{Q R}{T V}=\frac{Q S}{T W}$	10. $\frac{A B}{D E}=\frac{A C}{D F}$	11. $\frac{F G}{J K}=\frac{G H}{K L}$	12. $\frac{M N}{Q R}=\frac{M P}{Q S}$
13. $\frac{T V}{X Y}=\frac{V W}{Y Z}$	14. $\frac{A B}{E F}=\frac{B C}{F G}$	15. $\frac{H I}{K L}=\frac{I K}{K M}$	16. $\frac{N P}{R S}=\frac{P Q}{S T}$

To identify connecting sides, put the two angle letters together.
$\angle A \& \angle B$ are connected by $\overline{A B}$.
$\angle B \& \angle C$
are connected by $\overline{B C}$.
$\angle D \& \angle E$ are connected by $\overline{D E}$.

Identify the sides that connect each angle pair.

17. $\angle C \& \angle D$	$18 . \angle E \& \angle F$	$19 . \angle F \& \angle G$	$20 . \angle G \& \angle H$
$21 . \angle I \& \angle J$	$22 . \angle K \& \angle L$	$23 . \angle M \& \angle N$	$24 . \angle P \& \angle Q$

Answers: 1. $\angle C ; 2 . \angle D ; 3 . \angle F ; 4 . \angle I ; 5 . \angle \mathrm{L} ; 6 . \angle P ; 7 . \angle \mathrm{S} ; 8 . \angle X ; 9 . \angle \mathrm{Q} \& \angle T ; 10 . \angle A \& \angle D ; 11 . \angle G \& \angle K ; 12 . \angle M \& \angle Q$; 13. $\angle V \& \angle Y ; 14 . \angle B \& \angle F ; 15 . \angle I \& \angle K ; 16 . \angle P \& \angle S ; 17 . \overline{C D} ; 18 . \overline{E F} ; 19 . \overline{F G} ; 20 . \overline{G H} ; 21 . \overline{I J} ; 22 . \overline{K L} ; 23 . \overline{M N} ; 24 . \overline{P Q}$
\qquad
If you want to identify whether or not triangles are similar (or congruent), your first task is making sure the parts you're comparing match each other in the correct order. That is why identifying connecting parts is so important.

SAS only works if the angle connects the sides, just like ASA only works if the side connects the angles.

Alternatively, AAS needs the side NOT to connect.

For \#25-30, identify which property, if any, could prove that the triangles are SIMILAR.
(Remember: for similarity, sides use fractions, and the properties are SSS, SAS or AA)

25. Can you prove they're similar? If they're similar, by what property (SSS, SAS, AA)? $\frac{M P}{R S}=\frac{L P}{T S} \quad \& \quad \angle P \cong \angle S$	26. Can you prove they're similar? If they're similar, by what property (SSS, SAS, AA)? $\frac{M P}{R S}=\frac{L P}{T S} \quad \& \quad \frac{L P}{T S}=\frac{M L}{R T}$	27. Can you prove they're similar? If they're similar, by what property (SSS, SAS, AA)? $\frac{L P}{T S}=\frac{M L}{R T} \quad \& \quad \angle L \cong \angle T$
28. Can you prove they're similar? If they're similar, by what property (SSS, SAS, AA)? $\frac{M P}{R S}=\frac{M L}{R T} \quad \& \quad \angle P \cong \angle S$	29. Can you prove they're similar? If they're similar, by what property (SSS, SAS, AA)? $\angle P \cong \angle S \quad \& \quad \angle L \cong \angle T$	30. Can you prove they're similar? If they're similar, by what property (SSS, SAS, AA)? $\frac{M P}{R S}=\frac{L P}{T S}$

For \#31-36, identify which property, if any, could prove that the triangles are CONGRUENT.
(Remember: for congruence, sides don't use fractions, and the properties are SSS, SAS, ASA, AAS or HL)
31. Can you prove they're congruent? If they're congruent, by what property (SSS, SAS, ASA, AAS, HL)?

$\overline{M P} \cong \overline{R S} \quad \overline{L P} \cong \overline{T S} \quad \& \quad \angle M \cong \angle R$
34. Can you prove they're congruent?

If they're congruent, by what property (SSS, SAS, ASA, AAS, HL)?

$$
\overline{M L} \cong \overline{R T} \quad \angle P \cong \angle S \quad \& \quad \angle L \cong \angle T
$$

32. Can you prove they're congruent? If they're congruent, by what property (SSS, SAS, ASA, AAS, HL)?
$\overline{L P} \cong \overline{T S} \quad \angle P \cong \angle S \quad \& \quad \angle L \cong \angle T$
33. Can you prove they're congruent? If they're congruent, by what property (SSS, SAS, ASA, AAS, HL)?

$$
\overline{M P} \cong \overline{R S} \quad \overline{L P} \cong \overline{T S} \quad \& \quad \overline{M L} \cong \overline{R T}
$$

33. Can you prove they're congruent? If they're congruent, by what property (SSS, SAS, ASA, AAS, HL)?

$$
\overline{M P} \cong \overline{R S} \quad \overline{L P} \cong \overline{T S} \quad \& \quad \angle P \cong \angle S
$$

36. Can you prove they're congruent? If they're congruent, by what property (SSS, SAS, ASA, AAS, HL)?

$$
\begin{gathered}
\overline{L P} \cong \overline{T S} \quad \overline{M L} \cong \overline{R T} \quad m \angle P=90^{\circ} \\
\& \quad m \angle S=90^{\circ}
\end{gathered}
$$

