\qquad Per: \qquad Determining Volume Part 1

There are three steps to determining the volume of Prisms, Cylinders, Pyramids, and Cones, depending on the figure you have:

Volume of Prisms and Cylinders

Triangular Prism	Rectangular Prism	Cylinder
Step 1: Find the base area. $A=\frac{\text { bh }}{2}$	Step 1: Find the base area. $A=b h$	Step 1: Find the base area. $A=\pi r^{2}$
Multiply the base length and base height, then divide by 2.	Multiply the base length by the base height.	Multiply the radius length by itself, then multiply by π.

Step 2: Identify the figure height (H).

Step 3: Multiply the answer from Step 1 by Step 2.

$$
(V=A H)
$$

Volume of Pyramids and Cones

Triangular Pyramid	Rectangular Pyramid	Cone
Step 1: Find the base area.	Step 1: Find the base area. $A=\frac{b h}{2}$	Step 1: Find the base area. $A=b h$
Multiply the base length and base height, then divide by 2.	Multiply the base length by the base height.	Multiply the radius length by itself, then
multiply by π.		

Step 2: Identify the figure height (H).
Step 3: Multiply the answer from Step 1 by Step 2, then divide that by 3.

$$
\left(V=\frac{A H}{3}\right)
$$

Evaluate. For cylinders and cones, leave your answer in terms of pi.

1. Determine the volume of a rectangular prism that has a base length of 9 in , a base height of 4 in and a height of 10 in . Step 1: Base Area

Step 2: Height

Step 3: Volume
3. Determine the volume of a cone that has a radius of 12 in and a height of 7 in .
Step 1: Base Area

Step 2: Height

Step 3: Volume
2. Determine the volume of a rectangular pyramid that has a base length of 9 in , a base height of 4 in and a height of 10 in.
Step 1: Base Area

Step 2: Height

Step 3: Volume
4. Determine the volume of a cylinder that has a radius of 12 in and a height of 7 in.
Step 1: Base Area

Step 2: Height

Step 3: Volume

Name:
Per:

5. Determine the volume of a triangular pyramid that has a base length of 7 cm , a base height of 6 cm and a height of 4 cm . Step 1: Base Area			6. Determine the volume of a triangular prism that has a base length of 7 cm , a base height of 6 cm and a height of 4 cm .		
			Step 1: Base Area		
Step 2: Height			Step 2: Height		
Step 3: Volume			Step 3: Volume		
7. Determine the volume of a cone that has a height of 3 cm and a radius of 10 cm .			8. Determine the volume of a cylinder that has a height of 3 cm and a radius of 10 cm .		
Step 1: Base Area			Step 1: Base Area		
Step 2: Height			Step 2: Height		
Step 3: Volume			Step 3: Volume		
9. Determine the volume of a cylinder that has a radius of 8 in and a height of 6 in.			10. Determine the volume of a cone that has a radius of 8 in and a height of 6 in .		
Step 1: Base Area			Step 1: Base Area		
Step 2: Height			Step 2: Height		
Step 3: Volume			Step 3: Volume		
11. Determine the volume of a square pyramid that has a base length of 12 in and a height of 5 in . (hint: base \& height on a square are the same!)			12. Determine the volume of a square prism that has a base length of 12 in and a height of 5 in. (hint: base \& height on a square are the same!)		
Step 1: Base Area			Step 1: Base Area		
Step 2: Height			Step 2: Height		
Step 3: Volume			Step 3: Volume		
Determining Volume Part 1 Answers					
$\begin{aligned} & \text { 1. S1: } A=36 \text { in }^{2} ; \\ & \text { S2: } H=10 \mathrm{in} ;^{\text {S3: } V=360 \mathrm{in}^{3}} \end{aligned}$	$\begin{aligned} & \text { 2. S1: } A=36 \mathrm{in}^{2} \text {; } \\ & \text { S2: } H=10 \mathrm{in} ; \\ & \text { S3: } V=120 \mathrm{in}^{3} \end{aligned}$	$\begin{aligned} & \text { 3. S1: } A=144 \pi \mathrm{in}^{2} \text {; } \\ & \text { S2: } H=7 \mathrm{in} ; \\ & \text { S3: } V=336 \pi \mathrm{in}^{3} \end{aligned}$	$\begin{aligned} & \text { 4. S1: } A=144 \pi \mathrm{in}^{2} \text {; } \\ & \text { S2: } H=7 \mathrm{in} ; \\ & \text { S3: } V=1008 \pi \mathrm{in}^{3} \end{aligned}$	$\begin{aligned} & \text { 5. S1: } A=21 \mathrm{~cm}^{2} ; \\ & \text { S2: } H=4 \mathrm{~cm} ; \\ & \text { S3: } V=28 \mathrm{~cm}^{3} \end{aligned}$	$\begin{aligned} & \text { 6. S1: } A=21 \mathrm{~cm}^{2} \text {; } \\ & \text { S2: } H=4 \mathrm{~cm}^{2} \\ & \text { S3: } V=84 \mathrm{~cm}^{3} \end{aligned}$
$\begin{aligned} & \text { 7. S1: } A=100 \pi \mathrm{~cm}^{2} \text {; } \\ & \text { S2: } H=3 \mathrm{~cm} ; \\ & \text { S3: } V=100 \pi \mathrm{~cm}^{3} \end{aligned}$	$\begin{aligned} & \text { 8. S1: } A=100 \pi \mathrm{~cm}^{2} ; \\ & \text { S2: } H=3 \mathrm{~cm} ; \\ & \text { S3: } V=300 \pi \mathrm{~cm}^{3} \end{aligned}$	$\begin{aligned} & \text { 9. S1: } A=64 \pi \mathrm{in}^{2} ; \\ & \text { S2: } H=6 \mathrm{in} ; \\ & \text { S3: } V=384 \pi \mathrm{in}^{3} \end{aligned}$	$\begin{aligned} & \text { 10. S1: } A=64 \pi \mathrm{in}^{2} \text {; } \\ & \text { S2: } H=6 \text { in; } \\ & \text { S3: } V=128 \pi \mathrm{in}^{3} \end{aligned}$	$\begin{aligned} & \text { 11. S1: } A=144 \mathrm{in}^{2} ; \\ & \text { S2: } H=5 \mathrm{in} ; \\ & \text { S3: } V=240 \mathrm{in}^{3} \end{aligned}$	$\begin{aligned} & \text { 12. S1: } A=144 \mathrm{in}^{2} \text {; } \\ & \text { S2: } H=5 \mathrm{inn}^{3} \\ & \text { S3: } V=720 \mathrm{in}^{3} \end{aligned}$

