Determining Volume Part 2

Volume of Spheres

ume of Spheres	Dilating Length, Area & Volume by <i>k</i>						
$A\pi r^3$	Lengths	Area	Volume				
$V = \frac{4\pi r^3}{3}$	NewLength = Length(k)	$NewArea = Area(k^2)$	$NewVolume = Volume(k^3)$				
	Multiply by the k-value.	Multiply by the k-value twice .	Multiply by the k-value three times .				

Evaluate. For cylinders, cones and spheres, leave your answer in terms of pi.

1. Determine the volume of a c and a radius of 1 in.	ylinder that has a height of 5 in	2. Determine the volume of a square pyramid that has a base length of 6 in, a height of 4 in and a slant height of 5 in.		
Step 1: Base Area	If you dilate each	Step 1: Base Area	If you dilate each	
Step 2: Height	part by k = 4 , what will the dilated volume be?	Step 2: Height	part by k = 2 , what will the dilated volume be?	
Step 3: Volume	$V(k^3) =$	Step 3: Volume	$V(k^3) =$	
3. Determine the volume of a s	phere that has a radius of 3 in.	height of 3 in and a slant heigh	cone that has a radius of 2 in, a i t of 4 in.	
	If you dilate each part by k = 2 , what will the	Step 1: Base Area	If you dilate each	
	$\frac{dilated \ volume \ be?}{V(k^3)} =$	Step 2: Height	part by k = 5 , what will the dilated volume be?	
		Step 3: Volume	$V(k^3) =$	
5. Determine the volume of a s length of 4 cm and a height of 5		6. Determine the volume of sp	here that has a radius of 30 cm	
Step 1: Base Area	If you dilate each part by k = 4 ,		If you dilate each part by k = 3 , what will the dilated volume be?	
Step 2: Height	what will the dilated volume be?			
Step 3: Volume				

	Name: Per:
7. Determine the volume of a rectangular prism that has base length of 5cm, a base height of 2cm and a height of 3	
Step 1: Base Area <i>If you dilate end</i> <i>part by</i> k =	
Step 2: Height what will the dilated volume	e Step 2: Height what will the
Step 3: Volume	Step 3: Volume
9. Determine the volume of a cylinder that has a radius of and a height of 10 in.Step 1: Base Area	f 2 in 10. Determine the volume of a sphere that has a radius of 9 in
If you dilate e part by k =	5, dilated volume be?
Step 2: Height what will the dilated volume	
Step 3: Volume	
11. Determine the volume of a square pyramid that has a base length of 2 in, a height of 3 in and a slant height of 4	
Step 1: Base Area	Step 1: Base Area
If you dilate expansionStep 2: Height $k = what will the$	$3, \qquad \qquad$
dilated volume	be? dilated volume be?
Step 3: Volume	Step 3: Volume
	ng Volume Part 2 Answers

Determining Volume Part 2 Answers								
$1. V = 5\pi in^{3};$ Dilated V = 320\pi in^{3}	2. $V = 48 in^3$; Dilated $V = 384 in^3$	3. $V = 36\pi in^3$; Dilated $V = 288\pi in^3$	4. $V = 4\pi in^{3}$; Dilated $V = 500\pi in^{3}$	5. $V = 80 \ cm^3$; Dilated $V = 5120 \ cm^3$	6. $V = 36000\pi \ cm^3$; Dilated V			
Dualea $V = 520\pi l m^2$	Dilated $V = 364 \text{ m}^2$	Diluted $V = 2000 \text{ m}^2$	Dilated $V = 500\pi$ th	Dilated $V = 5120 \text{ cm}^3$	$= 972,000\pi \ cm^3$			
$7. V = 30 \ cm^3;$	8. $V = 15\pi \ cm^3$;	9. $V = 40\pi i n^3$;	$10.V = 972\pi in^3;$	11. $V = 4 in^3$;	12. $V = 24\pi i n^3$;			
Dilated $V = 1920 \ cm^3$	Dilated $V = 405\pi \ cm^3$	Dilated $V = 5000\pi in^3$	Dilated $V = 7776\pi in^3$	Dilated $V = 108 in^3$	Dilated $V = 192\pi in^3$			