\qquad Per: \qquad Determining Volume Part 2

Volume of Spheres

$$
V=\frac{4 \pi r^{3}}{3}
$$

Dilating Length, Area \& Volume by k

Lengths	Area	Volume
NewLength $=$ Length (k)	NewArea $=\operatorname{Area}\left(k^{2}\right)$	NewVolume $=\operatorname{Volume}\left(k^{3}\right)$
Multiply by the k-value.	Multiply by the k-value twice.	Multiply by the k-value three times.

Evaluate. For cylinders, cones and spheres, leave your answer in terms of pi.

1. Determine the volume of a cylinder that has a height of 5 in and a radius of 1 in .

Step 1: Base Area	
Step 2: Height	Ifyou dilate each part by $\boldsymbol{k}=\mathbf{4}$, what will the dilated volume be?
Step 3: Volume	$V\left(k^{3}\right)=$

3. Determine the volume of a sphere that has a radius of 3 in.

	Ifyou dilate each part by $\boldsymbol{k}=\mathbf{2}$, what will the dilated volume be?
$\left(k^{3}\right)=$	

5. Determine the volume of a square prism that has a base length of 4 cm and a height of 5 cm .

Step 1: Base Area	
Step 2: Height	Ifyou dilate each part by $\boldsymbol{k}=\mathbf{4}$, what will the dilated volume be?
Step 3: Volume	

2. Determine the volume of a square pyramid that has a base length of 6 in , a height of 4 in and a slant height of 5 in .

Step 1: Base Area	
Step 2: Height	Ifyou dilate each part by $\boldsymbol{k}=2$, what will the dilated volume be?
Step 3: Volume	$V\left(k^{3}\right)=$

4. Determine the volume of a cone that has a radius of $2 \mathrm{in}, \mathrm{a}$ height of 3 in and a slant height of 4 in.

Step 1: Base Area	
Step 2: Height	If you dilate each part by $\boldsymbol{k}=\mathbf{5}$, what will the dilated volume be?
Step 3: Volume	$V\left(k^{3}\right)=$

6. Determine the volume of sphere that has a radius of 30 cm .

7. Determine the volume of a rectangular prism that has a base length of 5 cm , a base height of 2 cm and a height of 3 cm .

Step 1: Base Area	
Step 2: Height	Ifyou dilate each part by $\boldsymbol{k}=\mathbf{4}$, what will the dilated volume be?
Step 3: Volume	

9. Determine the volume of a cylinder that has a radius of 2 in and a height of 10 in .

Step 1: Base Area	
Step 2: Height	Ifyou dilate each part by $\boldsymbol{k}=\mathbf{5}$, what will the dilated volume be?
Step 3: Volume	

11. Determine the volume of a square pyramid that has a base length of 2 in , a height of 3 in and a slant height of 4 in .

Step 1: Base Area	
Step 2: Height	If you dilate each part by $\boldsymbol{k}=\mathbf{3}$, what will the dilated volume be?
Step 3: Volume	

8. Determine the volume of a cone that has a radius of $3 \mathrm{~cm}, \mathrm{a}$ slant height of 6 cm and a height of 5 cm .

Step 1: Base Area	
Step 2: Height	If you dilate each part by $\boldsymbol{k}=\mathbf{3}$, what will the dilated volume be?
Step 3: Volume	

10. Determine the volume of a sphere that has a radius of 9 in .

	Ifyou dilate each part by $\boldsymbol{k}=\mathbf{2}$, what will the dilated volume be?

12. Determine the volume of a cone that has a height of 2 in , a slant height of 6 in and a radius of 6 in .

Step 1: Base Area	
Step 2: Height	Ifyou dilate each part by $\boldsymbol{k}=2$, what will the dilated volume be?
Step 3: Volume	

Determining Volume Part 2 Answers

1. $V=5 \pi \mathrm{in}^{3} ;$ Dilated $V=320 \pi \mathrm{in}^{3}$	$2 . V=48 \mathrm{in}^{3} ;$ Dilated $V=384 \mathrm{in}^{3}$	$3 . V=36 \pi \mathrm{in}^{3} ;$ Dilated $V=288 \pi \mathrm{in}^{3}$	$4 . \mathrm{V}=4 \pi \mathrm{in}^{3} ;$ Dilated $V=500 \pi \mathrm{in}^{3}$	$5 . \mathrm{V}=80 \mathrm{~cm}^{3} ;$ Dilated $V=5120 \mathrm{~cm}^{3}$	$6 . V=36000 \pi \mathrm{~cm}^{3} ;$ Dilated V $=972,000 \pi \mathrm{~cm}^{3}$
7. $V=30 \mathrm{~cm}^{3} ;$ Dilated $V=1920 \mathrm{~cm}^{3}$	$8 . V=15 \pi \mathrm{~cm}^{3} ;$ Dilated $V=405 \pi \mathrm{~cm}^{3}$	$9 . V=40 \pi \mathrm{in}^{3} ;$ Dilated $V=5000 \pi \mathrm{in}^{3}$	$10 . V=972 \pi \mathrm{in}^{3} ;$ Dilated $V=7776 \pi \mathrm{in}^{3}$	$11 . V=4 \mathrm{in}^{3} ;$ Dilated $V=108 \mathrm{in}^{3}$	$12 . V=24 \pi \mathrm{in}^{3} ;$ Dilated $V=192 \pi \mathrm{in}^{3}$

