Name: \qquad
Integrated 2 Final Exam Review - End of Unit 5
Unit 5 Questions

1. Which are NOT valid conclusions that you can draw from this picture?

a. $\triangle \mathrm{ABC} \cong \triangle E D C$
b. $\triangle \mathrm{ABC} \sim \triangle E D C$
f. $\frac{B C}{A C}=\frac{D C}{E D}$
c. Slope of $\overline{A C}=$ slope
of $\overline{C E}$
d. $\overline{A B} \cong \overline{E D}$
e. $\overline{A C} \cong \overline{E C}$
g. $\frac{B C}{A C}=\frac{D C}{E C}$
2. A 50-foot-long support wire for a 16 -foot tall post runs from the top corner of a building to a point on the ground, forming a straight line. The length of the wire from the top of the building to the top of the light post is 30 feet. How tall is the building?
a. $\quad 3.8 \mathrm{ft}$
b. $\quad 26.7 \mathrm{ft}$
c. $\quad 30.0 \mathrm{ft}$
d. $\quad 40.0 \mathrm{ft}$

Review Questions

5. Match the statement with its reason.
a. If ray $B C$ goes through angle $A B D$, then $m \angle A B C+m \angle C B D=m \angle A B D$.
b. If point R is on segment $Q S$, then $Q R+R S=Q S$
c. If two angles are supplementary to the same angle, then the two angles are congruent to each other.
d. If two angles are complementary to the same angle, then the two angles are congruent to each other.
e. If D is the midpoint of segment $C E$, then $2(C D)=C E$.
f. If $\overline{R S} \cong \overline{S T}$, then $R S=S T$.
g. If $2 x-3=11$, then $2 x=14$.
h. On $\triangle A B C, m \angle A+m \angle B+m \angle C=$ 180°.

Match	Reason
	Congruent Supplement Theorem
	Triangle Sum Theorem
	Angle Addition Postulate
	Definition of a Midpoint
	Definition of Congruence
	Segment Addition Postulate
	Addition Property of Equality
	Congruent Complement Theorem

6. Given the function
$f(x)=6 x+24$, write the inverse function.
7. Which expression is equivalent to the expression?
$\left(4 x^{3}+7 x^{2}\right)+\left(-2 x^{3}-5 x+6\right)$
a. $2 x^{3}+2 x^{2}+6$
b. $\quad 4 x^{3}+2 x^{2}+6$
c. $2 x^{3}+7 x^{2}-5 x+6$
d. $4 x^{3}+7 x^{2}-5 x+6$

Name: \qquad

8. Which is equivalent to the expression? $(3 x-7)^{2}$ a. $9 x^{2}+49$ b. $9 x^{2}-49$ c. $9 x^{2}-42 x+49$ d. $9 x^{2}+42 x+49$	9. What is the product of the polynomials? $x-5 \text { and } 2 x^{2}+3 x-4$ a. $\quad 2 x^{3}-7 x^{2}-19 x+20$ b. $2 x^{3}-13 x^{2}-19 x-20$ c. $2 x^{3}+13 x^{2}+19 x-20$ d. $2 x^{3}-7 x-19 x+20$	10. Under which operations are the set of integers NOT closed? a. Addition b. Subtraction c. Multiplication d. Division
11. In which sets does the number 3π NOT belong? a. Rational numbers b. Integers c. Whole Numbers d. Natural Numbers e. Irrational Numbers f. Real Numbers g. Imaginary Numbers	12. Which function represents a parabola that is translated 7 units to the left and 4 down from the function $f(x)=x^{2}$? a. $\quad f(x)=5(x+7)^{2}-4$ b. $\quad f(x)=11(x-7)^{2}+4$ c. $\quad f(x)=9(x+7)(x-4)$ d. $f(x)=-4(x-7)(x+4)$	13. What are the roots of the quadratic equation? $y=2 x^{2}+11 x+12$ a. $x=3$ and $x=8$ b. $x=-3$ and $x=-8$ c. $x=-1.5$ and $x=-4$ d. $x=1.5$ and $x=4$
14. A long-distance bus passes by a certain rest stop at the halfway point of its trip each day. The graph models the bus at a constant speed. Which equation best represents the graph? a. $f(x)=\|60 x-240\|$ b. $f(x)=\|60 x+240\|$ c. $f(x)=\|x\|+240$ d. $f(x)=\|60 x+4\|$	15. How is this graph different from a graph of the function $f(x)=$ x^{2} ? a. It is translated 3 units to the left and 1 unit down. b. It is translated 3 units to the right and 1 unit down. c. It is translated 1 unit to the right and 3 units down. d. It is translated 1 unit to the left and 3 units down.	16. What is the range of the function represented by the graph? a. All real numbers greater than or equal to -5 . b. All real numbers less than or equal to -1 . c. All real numbers greater than or equal to -3 . d. All real numbers less than or equal to 3 .
17. What are the solution(s) to the system of equations shown? a. $(-3,0)$ and $(-1,0)$ b. $(-7,0)$ c. $(0,7)$ d. $(-4,3)$ and $(1,8)$	18. Which polynomial does the graph represent? a. $\quad y=(x+1)(x+3)$ b. $\quad y=(x+1)(x-3)$ c. $y=(x-1)(x+3)$ d. $y=(x-1)(x-3)$	19. A small rocket on a lunar outpost around Jupiter was launched from a 25 -meter platform. The height of the rocket is modeled by the function $h(t)=-5 t^{2}+20 t+25$, where t is time in seconds and $h(t)$ is the height of the rocket in meters. a. What will be the value of $h(t)$ when the rocket hits the ground? b. Find the time when the rocket hits the ground, clearly showing how you used the equation.

Name: \qquad

Integrated 2 Final Exam Review - End of Unit 5

Answers:

1. $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$
2. D
3. D
4. D
5. In order, top to bottom: C, H, A, E, F, B, G, D
6. $f^{-1}(x)=\frac{x}{6}-4$
7. C
8. A
9. D
10. A, B, C, D, G
11. A
12. C
13. A
14. B
15. C
16. D
17. C
18. a. 0 meters
b. 5 seconds
