\qquad
Setting up Special Triangle Relationships to Solve
Special Triangles are ($30^{\circ}-60^{\circ}-90^{\circ}$ and $45^{\circ}-45^{\circ}-90^{\circ}$) are two types of triangles that can be solved either by using trigonometry or by remembering the relationships between the sides, which creates, in essence, a shortcut.

There are 3 steps in solving special triangles:
Step 1: Label the sides as "opp30, opp60 and hyp" or "opp45, opp45 and hyp".
If you have trouble finding opp sides, look for adj ones instead: opp30 is adj60 \& opp60 is adj30.
Step 2: Create a complete equation using the special triangle relationships and the side you know.
The two relationship sets that you need to remember are:

$\mathbf{3 0}^{\circ}-\mathbf{6 0}^{\circ} \mathbf{- 9 0}$	
opp $30^{\circ}:$	x
opp $60^{\circ}:$	$x \sqrt{3}$
hyp:	$2 x$

$\mathbf{4 5}^{\circ} \mathbf{- 4 5}{ }^{\circ} \mathbf{- 9 0}$	
opp $45^{\circ}:$	x
opp $45^{\circ}:$	x
hyp:	$x \sqrt{2}$

Step 3: Solve any complete equation you have to find x, then plug x into the equation for the side you want.
Section 1: Label the sides as "opp30, opp60 and hyp" or "opp45, opp45 and hyp".

EXAMPLE 1A: Just label the triangle's sides. \rightarrow hyp never touches the right angle $\rightarrow o p p 60^{\circ}$ never touches the 60° $\rightarrow o p p 30^{\circ}$ never touches the 30°	EXAMPLE 2A: Just label the triangle's sides. \rightarrow hyp never touches the right angle $\rightarrow o p p 45^{\circ}$ are the other two sides (same angle, same label)	$1 a$	
$2 a \text {. }$	$3 a$.	$4 a$	
$5 a$.	$6 a$.	$7 a$	

Section 2: Fill in the blanks to create a complete equation using the side you know. Put "?" next to your unknowns.

EXAMPLE 1B: Just write in the sides that you know. opp30: $x=\ldots ? _\quad \leftarrow$ blank opp60: $x \sqrt{3}=\ldots ? _\leftarrow$ blank hyp: $2 x=\ldots 14 _\leftarrow$ hyp was 14	EXAMPLE 2B: opp45: $x=$ _ $12 _\leftarrow$ opp 45 was 12 opp45: $x=$ _ ? __ \leftarrow blank hyp: $x \sqrt{2}=\ldots ? _\leftarrow$ blank	$1 b$. $\begin{aligned} & \text { opp } 30: x= \\ & \text { opp } 60: x \sqrt{3}= \\ & \text { hyp: } 2 x= \end{aligned}$

$2 b$. $\begin{aligned} & \text { opp } 45: x= \\ & \text { opp } 45: x= \\ & \text { hyp }: x \sqrt{2}= \end{aligned}$	$3 b$. $\begin{aligned} & \text { opp } 30: x= \\ & \text { opp } 60: x \sqrt{3}= \\ & \text { hyp: } 2 x= \end{aligned}$	$4 b$. $\begin{aligned} & \text { opp } 30: x= \\ & \text { opp } 60: x \sqrt{3}= \\ & \text { hyp: } 2 x= \end{aligned}$
$5 b$. $\begin{aligned} & \text { opp } 30: x= \\ & \text { opp } 60: x \sqrt{3}= \\ & \text { hyp }: 2 x= \end{aligned}$	$6 b$. $\begin{aligned} & \text { opp } 30: x= \\ & \text { opp } 60: x \sqrt{3}= \\ & \text { hyp: } 2 x= \end{aligned}$	$7 b$. $\begin{aligned} & \text { opp } 45: x= \\ & \text { opp } 45: x= \\ & \text { hyp: } x \sqrt{2}= \end{aligned}$

Section 3: Now that you have one complete equation, solve it for x, then plug x into the equation for the side you want.

EXAMPLE 1C: opp $30: x=$? opp $60^{\circ}: x \sqrt{3}=$? hyp: $2 x=14$ The complete equation is: $2 x=14$ Now, I'll solve it for x : $\begin{gathered} 2 x=14 \\ \div 2 \quad \div 2 \\ x=7 \end{gathered}$ Plug x into the other two equations opp 30 : $x=$? (7) $=$?, so opp30 is 7 $o p p 60^{\circ}: x \sqrt{3}=?$ (7) $\sqrt{3}=$?, so opp 60 is $7 \sqrt{3}$	EXAMPLE 2C: opp45: $x=12$ opp45: $x=$? hyp: $x \sqrt{2}=$? The complete equation is: $x=12$ Now, I'll solve it for x : $x=12$...umm, it's already solved. So... Plug x into the other two equations opp45: $x=$? (12) $=$?, so opp45 is 12 hyp: $x \sqrt{2}=$? (12) $\sqrt{2}=$?, so hyp is $12 \sqrt{2}$	$1 c$. $\begin{aligned} & \text { opp } 30: x=5 \\ & \text { opp } 60: x \sqrt{3}=? \\ & \text { hyp: } 2 x=? \end{aligned}$
$2 c$. opp45: $x=$? opp45: $x=$? hyp: $x \sqrt{2}=11 \sqrt{2}$	$3 c$. opp30: $x=2$ орр $60: x \sqrt{3}=$? hyp: $2 x=$?	$4 c$. $\begin{aligned} & \text { opp } 30: x=\text { ? } \\ & \text { opp } 60: x \sqrt{3}=4 \sqrt{3} \\ & \text { hyp: } 2 x=\text { ? } \end{aligned}$
$5 c$. $\begin{aligned} & \text { opp } 30: x=\text { ? } \\ & \text { opp } 60: x \sqrt{3}=9 \sqrt{3} \\ & \text { hyp: } 2 x=\text { ? } \end{aligned}$	$6 c$. opp $30: x=$? орр $60: x \sqrt{3}=$? hyp: $2 x=20$	$7 c$. opp45: $x=8$ opp45: $x=$? hyp: $x \sqrt{2}=$?

