Name: ___

Setting up Special Triangle Relationships to Solve

Special Triangles are $(30^{\circ} - 60^{\circ} - 90^{\circ} \text{ and } 45^{\circ} - 45^{\circ} - 90^{\circ})$ are two types of triangles that can be solved *either* by using trigonometry or by remembering the relationships between the sides, which creates, in essence, a shortcut.

There are 3 steps in solving special triangles:

Step 1: Label the sides as "opp30, opp60 and hyp" or "opp45, opp45 and hyp".

If you have trouble finding opp sides, look for adj ones instead: opp30 is adj60 & opp60 is adj30. Step 2: Create a complete equation using the special triangle relationships and the side you know.

The two relationship sets that you need to remember are:

30° - 60° -	- 90°	45° - 45° ·	- 90°
opp30°:	x	opp45°:	x
opp60°:	$x\sqrt{3}$	opp45°:	x
hyp:	2 <i>x</i>	hyp:	$x\sqrt{2}$

Step 3: Solve any complete equation you have to find *x*, then plug *x* into the equation for the side you want.

Section 1: Label the sides as "opp30, opp60 and hyp" or "opp45, opp45 and hyp".

Section 2: Fill in the blanks to create a complete equation using the side you know. Put "?" next to your unknowns.

EXAMPLE 1B:	EXAMPLE 2B:	1 <i>b</i> .
$opp30 \begin{bmatrix} hyp \\ 14 \\ opp60 \end{bmatrix}$	opp45 hyp 45 12 opp45	$opp30_{5}$ hyp gpb60
Just write in the sides that you know. $opp30: x = _?_ \leftarrow blank$ $opp60: x\sqrt{3} = _?_ \leftarrow blank$ $hyp: 2x = _14_ \leftarrow hyp was 14$	$opp45: x = _12_ \leftarrow opp45 \text{ was } 12$ $opp45: x = _?_ \leftarrow blank$ $hyp: x\sqrt{2} = _?_ \leftarrow blank$	<i>opp</i> 30: $x = \$ <i>opp</i> 60: $x\sqrt{3} = \$ <i>hyp</i> : $2x = \$

Section 3: Now that you have one complete equation, solve it for *x*, then plug *x* into the equation for the side you want.

EXAMPLE 1C:	EXAMPLE 2C:	1 <i>c</i> .
opp30: x = ?	opp45: x = 12	opp30: x = 5
$opp60^{\circ}: x\sqrt{3} = ?$	opp45: x = ?	<i>opp</i> 60: $x\sqrt{3} = ?$
<i>hyp</i> : $2x = 14$	$hyp: x\sqrt{2} = ?$	<i>hyp</i> : $2x = ?$
	The complete equation is:	
The complete equation is:	x = 12	
2x = 14	Now, I'll solve it for <i>x</i> :	
Now, I'll solve it for <i>x</i> :	x = 12	
2x = 14	umm, it's already solved. So	
$\div 2 \div 2$		
x = 7	Plug <i>x</i> into the other two equations	
Plug x into the other two equations	opp45: x = ?	
opp30: x = ?	(12) = ?, so $opp45$ is <u>12</u>	
(7) = ?, so <i>opp</i> 30 is 7		
	$hyp: x\sqrt{2} = ?$	
$opp60^{\circ}: x\sqrt{3} = ?$	$(12)\sqrt{2} = 2$, so hyp is $12\sqrt{2}$	
$(7)\sqrt{3} = ?$, so <i>opp</i> 60 is $7\sqrt{3}$		
20	30	4 <i>c</i>
2c. $onn45: x = ?$	3c. ann 30: x = 2	4c. ann 30: x = ?
2 <i>c</i> . opp45: x = ? opp45: x = ?	3c. opp30: x = 2 $opp60: x\sqrt{3} = 2$	4c. opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$
2c. opp45: x = ? opp45: x = ? $hym: x\sqrt{2} = 11\sqrt{2}$	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hum: $2x = 2$	4 <i>c</i> . opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hum: $2x = 2$
2 <i>c</i> . opp45: x = ? opp45: x = ? $hyp: x\sqrt{2} = 11\sqrt{2}$	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hyp: 2x = ?	4 <i>c</i> . opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hyp: 2x = ?
2 <i>c</i> . opp45: x = ? opp45: x = ? $hyp: x\sqrt{2} = 11\sqrt{2}$	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hyp: 2x = ?	4 <i>c</i> . opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hyp: 2x = ?
2 <i>c</i> . opp45: x = ? opp45: x = ? $hyp: x\sqrt{2} = 11\sqrt{2}$	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hyp: 2x = ?	4 <i>c</i> . opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hyp: 2x = ?
2c. opp45: x = ? opp45: x = ? $hyp: x\sqrt{2} = 11\sqrt{2}$	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hyp: 2x = ?	4 <i>c</i> . opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hyp: 2x = ?
2c. opp45: x = ? opp45: x = ? $hyp: x\sqrt{2} = 11\sqrt{2}$	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hyp: 2x = ?	4 <i>c</i> . opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hyp: 2x = ?
2c. opp45: x = ? opp45: x = ? $hyp: x\sqrt{2} = 11\sqrt{2}$ 5c.	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hyp: 2x = ? 6c.	4 <i>c</i> . opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hyp: 2x = ? 7 <i>c</i> .
2c. opp45: x = ? opp45: x = ? $hyp: x\sqrt{2} = 11\sqrt{2}$ 5c. opp30: x = ?	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hyp: 2x = ? 6c. opp30: x = ?	4 <i>c</i> . opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hyp: 2x = ? 7 <i>c</i> . opp45: x = 8
2c. opp45: x = ? opp45: x = ? $hyp: x\sqrt{2} = 11\sqrt{2}$ 5c. opp30: x = ? $opp60: x\sqrt{3} = 9\sqrt{3}$	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hyp: 2x = ? 6c. opp30: x = ? $opp60: x\sqrt{3} = ?$	4c. opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hyp: 2x = ? 7c. opp45: x = 8 opp45: x = ?
2c. opp45: x = ? opp45: x = ? $hyp: x\sqrt{2} = 11\sqrt{2}$ 5c. opp30: x = ? $opp60: x\sqrt{3} = 9\sqrt{3}$ hyp: 2x = ?	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hyp: 2x = ? 6c. opp30: x = ? $opp60: x\sqrt{3} = ?$ hyp: 2x = 20	4c. opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hyp: 2x = ? 7c. opp45: x = 8 opp45: x = ? $hyp: x\sqrt{2} = ?$
2c. opp45: x = ? opp45: x = ? $hyp: x\sqrt{2} = 11\sqrt{2}$ 5c. opp30: x = ? $opp60: x\sqrt{3} = 9\sqrt{3}$ hyp: 2x = ?	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hyp: 2x = ? 6c. opp30: x = ? $opp60: x\sqrt{3} = ?$ hyp: 2x = 20	4c. opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hyp: 2x = ? 7c. opp45: x = 8 opp45: x = ? $hyp: x\sqrt{2} = ?$
2c. opp45: x = ? opp45: x = ? $hyp: x\sqrt{2} = 11\sqrt{2}$ 5c. opp30: x = ? $opp60: x\sqrt{3} = 9\sqrt{3}$ hyp: 2x = ?	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hyp: 2x = ? 6c. opp30: x = ? $opp60: x\sqrt{3} = ?$ hyp: 2x = 20	4c. opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hyp: 2x = ? 7c. opp45: x = 8 opp45: x = ? $hyp: x\sqrt{2} = ?$
2c. opp45: x = ? opp45: x = ? $hyp: x\sqrt{2} = 11\sqrt{2}$ 5c. opp30: x = ? $opp60: x\sqrt{3} = 9\sqrt{3}$ hyp: 2x = ?	3c. opp30: x = 2 $opp60: x\sqrt{3} = ?$ hyp: 2x = ? 6c. opp30: x = ? $opp60: x\sqrt{3} = ?$ hyp: 2x = 20	4c. opp30: x = ? $opp60: x\sqrt{3} = 4\sqrt{3}$ hyp: 2x = ? 7c. opp45: x = 8 opp45: x = ? $hyp: x\sqrt{2} = ?$