\qquad Per: \qquad
Probability of More than One Event

EXAMPLE

If you choose a card out of a 52-card deck, which has 36 number cards and 4 aces, and then roll a standard die (numbers 1-6), what is the probability that you will get an number card from the deck and a 4 or a 5 from the die?

$1^{\text {st }}$ event: Number Card

There are 36 number cards in the deck (total: 52), so the probability of a number card is: $\frac{36}{52}=\frac{36 \div 4}{52 \div 4}=\frac{9}{13}$

2nd event: 4 or 5

There are one of each number on the die (total: 6), and either a 4 or a 5 would work, the probability of a 4 or a 5 is: $\frac{2}{6}=\frac{2 \div 2}{6 \div 2}=\frac{1}{3}$

To combine the two events, you must multiply the two probabilities:

$$
\begin{aligned}
& \frac{9 \times 1}{13 \times \frac{1}{3}}=\frac{9}{39} \\
& \frac{9 \div 3}{39 \div 3}=\frac{3}{13}
\end{aligned}
$$

	$1^{\text {st }}$ Event	\times	$2^{\text {nd }}$ Event
Original Ace: Fractions	$\frac{36}{52}$	\times	4 or $5:$
$\frac{2}{6}$			
Reduced	$\frac{9}{13}$	\times	$\frac{1}{3}$
Fractions	$\frac{1}{2}$		
Combined Probability	$\frac{3}{13}=23.1 \%$		

EXAMPLE

There are 9 red shirts, 3 black shirts and 3 blue shirts in a bag. If 2 shirts are chosen at random, what is the probability of choosing 2 red shirts?

$1^{\text {st }}$ event: Red Shirt 1

There are 9 red shirts out of a total of 15 shirts, so the probability is: $\frac{9}{15}=\frac{9 \div 3}{15 \div 3}=\frac{3}{5}$

2nd event: Red Shirt 2

The first shirt was not put back, so there is 1 fewer red shirt, which means there are now 8 red shirts out of a total of 14, so the probability is: $\frac{8}{14}=\frac{8 \div 2}{14 \div 2}=\frac{4}{7}$

To combine the two events, you must multiply the two probabilities:

$$
\frac{3}{5} \times \frac{4}{7}=\frac{12}{35}
$$

	$1^{\text {st }}$ Event	\times	$2^{\text {nd }}$ Event
Original Fractions	Red 1: $\frac{9}{15}$	\times	Red 2: $\frac{8}{14}$
Reduced Fractions	$\frac{3}{5}$	\times	$\frac{4}{7}$
Combined Probability	$\frac{12}{35}=34.3 \%$		

1. If you roll a standard die (numbers 1-6) twice what is the probability that you will get a 5 and an even number?

	$1^{\text {st }}$ Event	\times	$2^{\text {nd }}$ Event
Original Fractions		\times	
Reduced Fractions		\times	
Combined Probability			

3. There are 10 freshmen, 12 juniors and 13 seniors in a classroom. If 2 students are chosen at random to carry boxes to another room, what is the probability that they will both be freshmen?

	$1^{\text {st }}$ Event	\times	$2^{\text {nd }}$ Event
Original Fractions		\times	
Reduced Fractions		\times	
Combined Probability			

2. If you grab a shirt at random out of a closet, which has 3 T-shirts and 4 button-ups, and then randomly choose a pair of socks out of a drawer, which has 4 pairs of white socks and 2 pairs of black socks, what is the probability of choosing a T-shirt and a pair of white socks?

	$1^{\text {st }}$ Event	\times	$2^{\text {nd }}$ Event
Original Fractions		\times	
Reduced Fractions		\times	
Combined Probability			

4. The names of 10 freshmen, 12 juniors and 13 seniors are in a jar. If 2 student names are chosen at random to win a prize, what is the probability that both prizes will be won by freshmen, given that the names are put back in the jar after each prize is awarded?

	$1^{\text {st }}$ Event	\times	$2^{\text {nd }}$ Event
Original Fractions		\times	
Reduced Fractions		\times	
Combined Probability			

Name:
Per:
5. If you choose a flavor of ice cream out of 32 possible flavors, and then choose either a cup or a cone at random, what is the probability that you will get a scoop of mint chocolate chip in a cone?

	$1^{\text {st }}$ Event	$2^{\text {nd }}$ Event
Original Fractions		
Reduced Fractions		
Combined Probability		

7. If you choose a card at random from a 52 -card deck, put it back, and then choose another card, what is the probability that you will choose a 9 and then choose the exact same card?

	$1^{\text {st }}$ Event	$2^{\text {nd }}$ Event
Original Fractions		
Reduced Fractions		
Combined Probability		

9. There are 5 green marbles, 8 black marbles, 3 clear marbles and 4 striped marbles in a bag. If a marble is chosen at random and then put back before another marble is randomly chosen, what is the probability of choosing a black and a green marble?

	$1^{\text {st }}$ Event	$2^{\text {nd }}$ Event
Original Fractions		
Reduced Fractions		
Combined Probability		

11. If you choose 2 cards out of a 52 -card deck, which has 13 cards in each suit, what is the probability that you will get a heart and then a club?

	$1^{\text {st }}$ Event	$2^{\text {nd }}$ Event
Original Fractions		
Reduced Fractions		
Combined Probability		

6. If you choose 2 scoops of ice cream at random from 32 possible flavors, given that you must choose two different flavors, what is the probability of choosing Strawberry and Bubblegum?

	$1^{\text {st }}$ Event	$2^{\text {nd }}$ Event
Original Fractions		
Reduced Fractions		
Combined Probability		

8. If you choose a card at random from a 52 -card deck and then choose another card, what is the probability that you will choose a 9 and then choose the exact same card?

	$1^{\text {st }}$ Event	$2^{\text {nd }}$ Event
Original Fractions		
Reduced Fractions		
Combined Probability		

10. There are 5 green marbles, 8 black marbles, 3 clear marbles and 4 striped marbles in a bag. If 2 marbles are chosen at random, what is the probability of choosing a black and a green marble?

	$1^{\text {st }}$ Event	$2^{\text {nd }}$ Event
Original Fractions		
Reduced Fractions		
Combined Probability		

12. If you choose 2 cards out of a 52 -card deck, which has 13 cards in each suit, what is the probability that you will get a heart and then a club, if the first card is replaced before the second card is drawn?

	$1^{\text {st }}$ Event	$2^{\text {nd }}$ Event
Original Fractions		
Reduced Fractions		
Combined Probability		

Probability of More than One Event Answers

1. Combined Probability: $\frac{1}{12}=8.3 \%$	2. Combined Probability: $\frac{2}{7}=28.6 \%$	3. Combined Probability: $\frac{9}{119}=7.6 \%$
4. Combined Probability: $: \frac{4}{49}=8.2 \%$	5. Combined Probability: $\frac{1}{64}=1.6 \%$	6. Combined Probability: $\frac{1}{992}=0.1 \%$
7. Combined Probability: $\frac{1}{676}=0.1 \%$	8. Combined Probability: $\frac{0}{1}=0.0 \%$	9.Combined Probability: $\frac{1}{10}=10.0 \%$
10. Combined Probability: $\frac{2}{19}=10.5 \%$	11. Combined Probability: $\frac{13}{204}=6.4 \%$	12. Combined Probability: $\frac{1}{16}=6.3 \%$

