
Final Exam Review – End of Unit 7

- Unit 7: Quadrilaterals
- For Questions 1-9, Circle <u>all</u> capitalized terms that apply:
 1. Consecutive angles of a rectangle are always CONGRUENT, COMPLEMENTARY and/or SUPPLEMENTARY.
- The diagonals of a rectangle always are CONGRUENT, PERPENDICULAR, PARALLEL, BISECT EACH OTHER and/or BISECT THE VERTEX ANGLES.
- 3. The opposite sides of a rectangle are always CONGRUENT, PERPENDICULAR, and/or PARALLEL.
- 4. The consecutive sides of a rectangle are always CONGRUENT, PERPENDICULAR, and/or PARALLEL.
- 5. A rectangle will always have exactly ZERO pairs, ONE pair or TWO pairs of parallel sides.
- 6. A rectangle will always have exactly ZERO pairs, ONE pair or TWO pairs of congruent sides.
- 7. If a quadrilateral has <u>no</u> pairs of parallel sides, then it could be a KITE, TRAPEZOID, PARALLELOGRAM, RECTANGLE, and/or a RHOMBUS.
- 8. If a quadrilateral has <u>exactly</u> one pair of parallel sides, then it could be a KITE, TRAPEZOID, PARALLELOGRAM, RECTANGLE, and/or a RHOMBUS.
- 9. If a quadrilateral has <u>exactly</u> two pairs of parallel sides, then it could be a KITE, TRAPEZOID, PARALLELOGRAM, RECTANGLE, and/or a RHOMBUS.

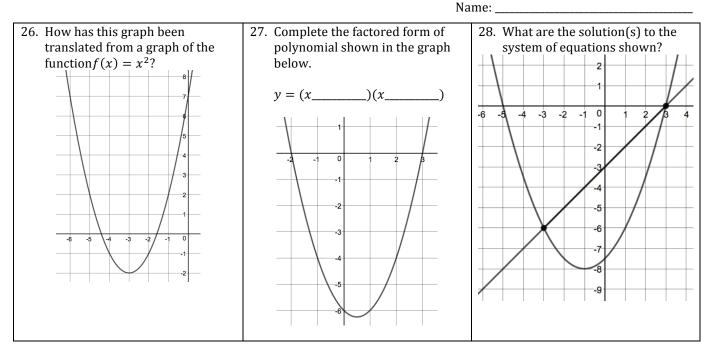
Unit 6: Right Triangle Trigonometry

Unit 5: Similar Triangles

Geometry:		
17. What is the name of the reason	18. Which of the following	19. Which of the following are true?
that states "On $\triangle ABC$, $m \angle ABC$ +	statements are true?	a. Two lines can intersect at
$m \angle BCA + m \angle CAB = 180^{\circ}$."	a. An isosceles triangle cannot	exactly two distinct points
a. Congruent Supplement	have three sides that are all	b. The intersection of a plane
Theorem	different lengths	and a line can happen at
b. Triangle Sum Theorem	b. The base is bisected by the	exactly three distinct points
c. Angle Addition Postulate	altitude of an isosceles	c. Two planes can have an
d. Definition of a Midpoint	triangle	infinite number of
e. Definition of Congruence	c. The altitude of an isosceles	intersection points
f. Segment Addition Postulate	triangle does not create two	d. A line and a plane may have
g. Addition Property of	congruent triangles	no points of intersection
Equality	d. An isosceles triangle can	e. Two planes can intersect
h. Congruent Complement	have three congruent sides	each other at a single point
	e. The vertex angle on an	f. A line can intersect a plane at
	isosceles triangle is bisected	a single point
	by the altitude	g. A line can intersect a plane at
	f. The base angles on an	an infinite number of points
	isosceles triangle are not	
	congruent	
	g. On an isosceles triangle, the	
	perpendicular bisector of the	
	base is the altitude	

Inverses and Other Functions:

20. Given the function f(x) = -4x + 36, write the inverse function. 21. A regional train passes by a certain train station halfway along its trip each day. The graph models the train traveling at a constant speed. Which equation best represents the graph? **a.** f(x) = |x + 20| **b.** f(x) = |20 - x| **c.** f(x) = |x| + 20**d.** f(x) = |20x|


Quadratics:

22. Write a function in vertex form	23. What are the roots of the	24. What is the range of the function
that represents a parabola that is	quadratic equation?	represented by the graph?
translated 3 units to the left and	$y = 3x^2 + x - 24$	
5 units up from the function		
$f(x) = x^2.$		

25. A small rocket on a lunar outpost around Jupiter was launched from a 45-meter platform. The height of the rocket is modeled by the function $h(t) = -5t^2 + 40t + 45$, where *t* is time in seconds and h(t) is the height of the rocket in meters.

a. What will be the value of h(t) when the rocket hits the ground?

b. Find the time when the rocket hits the ground, clearly showing how you used the equation.

Polynomials:

i orynomiais.						
29. Simplify the expression.	30. Simplify the expression.		31. What is the product of the			
$(7x^2 - 9x) + (-5x^3 - 5x^2 + 2)$	$(3x - 15)^2$		polynomials?			
			$x + 4$ and $2x^2 - 3x - 7$			
32. Under which operations are the set of integers NOT		33. In which sets does the number -9 NOT belong?				
open?		a. Rational numbers				
a. Addition		b. Integers	Integers			
b. Subtraction		c. Whole Numbers				
c. Multiplication		d. Natural N	al Numbers			
d. Division	e. Irratio		l Numbers			
		f. Real Num	ibers			
			y Numbers			
		5. Illagillar	y mullibers			

Final Exam Review – End of Unit 7 ANSWERS

ANSWERS									
1. CONGRUENT & SUPPLEMENTARY 2. CONGRUENT &		& BISECT EACH OTHER 3. CONGRUENT & PA		PARALLEL					
4. PERPENDICULAR	5. TWO PA	IRS	6. TWO PAIRS	WO PAIRS		7. KITE			
8. TRAPEZOID	9. PARALL	9. PARALLELOGRAM, RECTANGLE & RHOMBUS							
10. c. 64 square units	11. 4.7 ft		12. 692.8 ft		13. c. SAS				
14. 16 yd	15. 80 ft		16. a, d, f, & g		17. b. Triangle Sum Thm				
18. a, b, d, e & g	19. c, d, f &	g	20. $f(x) = \frac{x}{-4} + 9$		21. d. $f(x) = 20x $				
22. $f(x) = (x+3)^2 + 5$	23. $x = -3$	Sor $x = \frac{8}{3}$	24. $y \le 9$		25a. 0 m	25b. 9 sec			
26. left 3 & down 2 units	27. $y = (x \cdot x)$	(-3)(x+2)	28. (-3,-6) & (3,0)		29. $-5x^3 + 2x^2 - 9x + 2$				
30. $9x^2 - 90x + 225$	31. $2x^3 + 5$	$5x^2 - 19x - 28$	32. a, b & c		33. c, d, e & g				