Area of a Rectangle/Parallelogram	Area of a Triangle
Area of a Circle	Volume of a Prism
Volume of a Pyramid	Volume of a Sphere
Changing Dimensions (Effect on Volume)	Using the Volume of a Prism to Determine Base Area
Using the Volume of a Pyramid to Determine Base Area	Using the Volume of a Sphere to Determine Radius

Volume Formula Flashcards

B =	B =
V =	B =
V =	V =
$\frac{V}{H} = \frac{BH}{H}$ $\frac{V}{H} = B$ $B = \frac{V}{H}$	= New Volume or = New Volume
$3 \cdot V = \frac{4\pi r^3 \cdot 3}{3} \rightarrow 3V = 4\pi r^3$ $\rightarrow \frac{3V}{4\pi} = \frac{4\pi r^3}{4\pi} \rightarrow \frac{3V}{4\pi} = r^3$ $\boxed{r \cdot r \cdot r = \frac{3V}{4\pi}}$	$3 \cdot V = \frac{BH - 3}{3} \rightarrow 3V = BH \rightarrow \frac{3V}{H} = \frac{BH}{H}$ $\frac{3V}{H} = B$ $B = \frac{V}{H}$

Area of a Rectangle/Parallelogram	Area of a Triangle
Area of a Circle	Volume of a Prism
Volume of a Pyramid	Volume of a Sphere
Changing Dimensions (Effect on Volume)	Using the Volume of a Prism to Determine Base Area
Using the Volume of a Pyramid to Determine Base Area	Using the Volume of a Sphere to Determine Radius

Volume Formula Flashcards

$B = \frac{bh}{2}$	B = bh
V = BH	$B = \pi r^2$
$V = \frac{4\pi r^3}{3}$	$V = \frac{BH}{3}$
$\frac{V}{H} = \frac{BH}{H}$ $\frac{V}{H} = B$ $B = \frac{V}{H}$	(Volume)(Change) ³ = New Volume or (Vol)(Ch)(Ch)(Ch) = New Vol
$3 \cdot V = \frac{4\pi r^3 \cdot 3}{3} \rightarrow 3V = 4\pi r^3$ $\rightarrow \frac{3V}{4\pi} = \frac{4\pi r^3}{4\pi} \rightarrow \frac{3V}{4\pi} = r^3$ $\boxed{r \cdot r \cdot r = \frac{3V}{4\pi}}$	$3 \cdot V = \frac{BH - 3}{3} \rightarrow 3V = BH \rightarrow \frac{3V}{H} = \frac{BH}{H}$ $\frac{3V}{H} = B$ $B = \frac{V}{H}$