\qquad

Probabilities with "And" (Part 1)

When solving for a probability involving "and" or "both" or "3 times" or "4 digits," etc., what you're really solving is multiple probabilities combined. The Counting Principle tells us how to solve these types of problems. In basic terms, to combine multiple probabilities, you must multiply.

So, the sample size is created by multiplying the total from the $1^{\text {st }}$ event times the total from the $2^{\text {nd }}$ event (times the $3^{\text {rd }}$, and so on).

$$
\text { "And" Sample Size }=\binom{1 \text { st event's }}{\text { total }}\binom{2 n d \text { event's }}{\text { total }}\binom{3 r d \text { event's }}{\text { total }}(\ldots)
$$

Determining "and" probability works the same way:
or, more simply:

$$
\mathrm{P}(\text { "and" })=\left(\frac{1 \text { st want }}{1 \text { st total }}\right)\left(\frac{2 n d \text { want }}{2 n d \text { total }}\right)\left(\frac{3 r d \text { want }}{3 r d \text { total }}\right)(\ldots)
$$

$$
\mathrm{P}(\text { "and" })=(1 \text { st probability })(2 \text { nd probability })(3 \text { rd probability })(\ldots)
$$

"And" Using Categories
EXAMPLE There are 3 white shirts, 4 red shirts, 2 brown shirts, 3 black sweatshirts, 1 white sweatshirt, 2 pairs of white sneakers, 1 pair of black sneakers, 1 pair of sandals and 1 pair of dress shoes in the closet. If you randomly select 1 shirt, 1 sweatshirt, and 1 pair of shoes, what is the sample size for the combined probability? What is the probability that you will select a white shirt, black sweatshirt and a pair of white sneakers?

Category	Shirts				Sweatshirts			Shoes			
Sample Space	White	Red	Brown	Black	White	White Sneakers	Black Sneakers	Sandals	Dress shoes		
Amount	3	4	2	3	1	2	1	1	1		
Sample Size	9 shirts	9 shirts	9 shirts	4 Sw-shirts	4 Sw-shirts	5 shoes	5 shoes	5 shoes	5 shoes		
Probability of each event	$\frac{3}{9}=\frac{1}{3}$	$\frac{4}{9}$	$\frac{2}{9}$	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$		

a. Combined Sample Size:
$1^{\text {st }}$ event: 9 shirts $\quad 2^{\text {nd }}$ event: 4 Sweatshirts $\quad 3^{\text {rd }}$ event: 5 shoes Combined Sample Size $=(9)(4)(5)=(36)(5)=180$
b. $P(W$ Shirt \& B Sweatshirt \& W Sneakers $)=P(W$ shirt $) \cdot P(B$ Sweatshirt $) \cdot P(W$ Sneakers $)$ $P(W$ Shirt \& B Sweatshirt \& W Sneakers $)=\left(\frac{3}{9}\right)\left(\frac{3}{4}\right)\left(\frac{2}{5}\right)=\frac{(3)(3)(2)}{(9)(4)(5)}=\frac{18}{180} \ldots$ reduce by $18 \ldots \frac{1}{10}$
(If you reduced the original probabilities first, you would get the same answer) $P(W$ Shirt \& B Sweatshirt \& W Sneakers $)=\left(\frac{1}{3}\right)\left(\frac{3}{4}\right)\left(\frac{2}{5}\right)=\frac{(1)(3)(2)}{(3)(4)(5)}=\frac{6}{60} \ldots$ reduce by $6 \ldots \frac{1}{10}$

EXAMPLE There are 2 guys and 1 girl running for club treasurer, 3 girls and 2 guys running for vice president and 4 guys and 4 girls running for club president. If you randomly select 1 treasurer, 1 vice president, and 1 president, what is the sample size for the combined probability? What is the probability that all three officers will be male?

Category	Treasurer		Vice President		President	
Sample Space	Male	Female	Male	Female	Male	Female
Amount	2	1	2	3	4	4
Sample Size	3 for treasurer	3 for treasurer	5 for VP	5 for VP	8 for President	8 for President
Probability of each event	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{4}{8}=\frac{1}{2}$	$\frac{4}{8}=\frac{1}{2}$

a. Combined Sample Size: $(3$ treasurers $)(5 \mathrm{VPs})(8$ Presidents $)=(3)(5)(8)=120$
b. $P($ Male Treasurer \& Male VP \& Male President $)=P(M$. Treasurer $) \cdot P(M . V P) \cdot P(M$. President $)$

$$
=\left(\frac{2}{3}\right)\left(\frac{2}{5}\right)\left(\frac{1}{2}\right)=\frac{(2)(2)(1)}{(3)(5)(2)}=\frac{4}{30} \ldots \text { reduce } \ldots \frac{2}{15}
$$

1. There are 2 guys and 1 girl running for club treasurer, 3 girls and 2 guys running for vice president and 4 guys and 4 girls running for club president. If you randomly select 1 treasurer, 1 vice president, and 1 president, what is the sample size for the combined probability? What is the probability of selecting a male treasurer, female vice president, and male president?

Category	Treasurer		Vice President		President	
Sample Space	Male	Female	Male	Female	Male	Female
Amount						
Sample Size						
Probability of each event						

a. Combined Sample Size:
b. $P(\quad)=$
2. There are 2 guys and 1 girl running for club treasurer, 3 girls and 2 guys running for vice president and 4 guys and 4 girls running for club president. If you randomly select 1 treasurer, 1 vice president, and 1 president, what is the sample size for the combined probability? What is the probability that the treasurer will be female and both the vice president and president will be male?

Category	Treasurer		Vice President		President	
Sample Space	Male	Female	Male	Female	Male	Female
Amount						
Sample Size						
Probability of each event						

a. Combined Sample Size:
b. $P($
) $=$
3. There are 12 baseballs \& 3 tennis balls in the first bag, and 5 baseball jerseys, 3 football jerseys, and 2 plain shirts in the second bag. If you randomly select 1 item from each bag, what is the sample size for the combined probability? What is the probability of selecting a tennis ball and a plain shirt?

Category	$1^{\text {st }}$ Bag			$2^{\text {nd }}$ Bag	
Sample Space					
Amount					
Sample Size					
Probability of each event					

a. Combined Sample Size:
b. $P(\quad)=$
4. There are 8 shirts in a drawer: 3 are blue, 2 are gray, 1 is black and the rest are purple. In another drawer, there are 4 pairs of pants: 2 pair are jeans, 1 pair are cargo pants, and 1 pair are slacks. If you randomly select 1 shirt and 1 pair of pants, what is the sample size for the combined probability? What is the probability of selecting a gray shirt and a pair of jeans?

Category								
Sample Space								
Amount								
Sample Size								
Probability of each event								

a. Combined Sample Size:
b. $P(\quad)=$
5. There are 3 orange cats, 2 black cats, 1 gray dog, and 3 spotted dogs. If you randomly select 1 cat and 1 dog, what is the sample size for the combined probability? What is the probability of selecting an orange cat and a spotted dog?

Category				
Sample Space				
Amount				
Sample Size				
Probability of each event				

a. Combined Sample Size:
b. $P(\quad)=$

Basics of Probability with "And" (Part 1) Answers

1. $\text { Combined Sample Space }=120$ $\begin{aligned} & P(\text { Male } T \text { \& Female } V P \text { \& Male } P)=\frac{24}{120} \text {... reduce ... } \\ & P(\text { Male } T \text { \& Female } V P \text { \& Male } P)=\frac{1}{5} \end{aligned}$	2. Combined Sample Space $=120$ $\begin{aligned} & P(\text { Female } T \& \text { Male VP \& Male } P)=\frac{8}{120} \ldots \text { reduce ... } \\ & P(\text { Female } T \& \text { Male VP \& Male } P)=\frac{1}{15} \end{aligned}$
3. $\begin{aligned} & \text { Combined Sample Space }=150 \\ & P(\text { Tennis Ball \& Plain Shirt })=\frac{6}{150} \text {... reduce ... } \\ & P(\text { Tennis Ball \& Plain Shirt })=\frac{1}{25} \end{aligned}$	4. $\begin{aligned} & \text { Combined Sample Space }=32 \\ & P(\text { Gray Shirt \& Jeans })=\frac{4}{32} \ldots \text { reduce } \ldots \\ & P(\text { Gray Shirt \& Jeans })=\frac{1}{8} \end{aligned}$
5. $\begin{aligned} & \text { Combined Sample Space }=20 \\ & P(\text { Orange Cat \& Spotted Dog })=\frac{9}{20} \end{aligned}$	

