\qquad Per.: \qquad

Set-Builder and Interval Notation

Rules: *For set-builder,

1. Start with $\{\mathrm{x} \mid$
2. Write in the inequality $a s$ it is
3. Close with \}
*For interval,
4. Start with (if the lowest/starting number is not equal (or is $-\infty$), or [if the number is equal
5. Write in the lowest/starting number
6. If x is simply less than a single number, the starting number is $-\infty$
7. Write a comma
8. Write in the greatest/ending number
9. If x is simply greater than a single number, the ending number is ∞
10. End with) if the greatest/ending number is not equal (or is ∞), or] if the number is equal

Write each in the requested notation.

Inequality	Set-Builder	Interval	Inequality	Set-Builder	Interval
EXAMPLE: $-2<\mathbf{x} \leq \mathbf{7}$	Just write it into $\{x /\}$ $\{\mathbf{x} \mid-2<\mathbf{x} \leq 7\}$	-2 is not equal, but 7 is $\mathbf{(- 2 , 7]}$	EXAMPLE: $\mathbf{x} \geq \mathbf{5}$	Just write it into $\{x /\}$ $\{\mathbf{x} \mid \mathbf{x} \geq \mathbf{5}\}$	Equal to 5, and bigger $[\mathbf{5}, \boldsymbol{\infty} \mathbf{)}$
$1.6 \leq \mathrm{x}<9$			$4 . \mathrm{x} \leq 13$		
$2 . \mathrm{x}<-3$			$5.0<\mathrm{x}<1$		
$3 .-4 \leq \mathrm{x} \leq 10$			$6 . \mathrm{x}>6$		

Radicals

Rules:

1. Simplify, if you can, by separating out perfect square factors and rooting them. Ex: $\sqrt{56}=\sqrt{4} \sqrt{14}=2 \sqrt{14}$
2. Roots can be combined when multiplied or divided with each other, but a root cannot combine with a normal number. Ex: $\sqrt{3} \sqrt{12}=\sqrt{36}=6$ but... $4 \sqrt{7}$ is not $\sqrt{28}$ or 28 it's just $4 \sqrt{7}$!

$$
\text { Ex: } \frac{\sqrt{150}}{\sqrt{6}}=\sqrt{25}=5 \text { but... } \frac{\sqrt{15}}{3} \text { is not } \sqrt{5} \text { or } 5 \text { it's just } \frac{\sqrt{15}}{3}!
$$

3. To get a radical out of the bottom, rationalize the denominator. This means, multiply the top and bottom by the denominator's radical. Shortcut hint: the result will always move the radical to the top and leave a copy of its radicand (the number inside) on the bottom. Ex: $\frac{1}{\sqrt{17}} \rightarrow \frac{1 \sqrt{17}}{17} \rightarrow \frac{\sqrt{17}}{17}$

Simplify each.

1. $\sqrt{24}$	4. $\frac{\sqrt{56}}{\sqrt{14}}$	7. $\sqrt{50} \sqrt{20}$	$10 \cdot \frac{5 \sqrt{2}}{4 \sqrt{20}}$
2. $\frac{\sqrt{80}}{\sqrt{5}}$	$5 . \sqrt{15} \sqrt{10}$	$8 . \frac{6}{5 \sqrt{15}}$	$11 . \sqrt{72}$
3. $\sqrt{8} \sqrt{14}$	$6 . \frac{8}{\sqrt{12}}$	$9 . \sqrt{125}$	$12 . \sqrt{\frac{121}{25}}$

Exponents

Rules:

1. Anything to the power of $0=1$.
2. Anything to the power of ${ }^{1}=$ itself.
3. Anything to a negative power moves from the top of the fraction to the bottom, or from the bottom to the top. After it moves, the power becomes positive.
4. A power touching parentheses multiplies to every exponent inside them—including the invisible ${ }^{1}$.
5. Multiplying two base numbers that are the same means you add the exponents-including the invisible ${ }^{1}$.
6. Dividing two base numbers that are the same means you subtract the exponents-including the invisible ${ }^{1}$. Trick: always subtract bigger exponent - smaller exponent, and put what remains wherever the bigger exponent used to be. Ex: $\frac{a^{3}}{a^{5}}=\frac{1}{a^{2}}$ but $\frac{a^{5}}{a^{3}}=\frac{a^{2}}{1}=a^{2}$
7. The most important part of this process is organization. Organize the problem first, then keep it that way!

Simplify each.

Functions:

Rules:

1. Every girl gets one guy, every x gets one y. If any x has more than one y, it is not a function!
2. Domain is x, and Range is y.

Determine if each relation is a function.

$\begin{aligned} & 1 . \\ & \{(3,1),(-4,5) \text {, } \\ & (6,1),(0,2)\} \end{aligned}$	2. $\begin{array}{l\|l\|l\|l} \mathrm{D} & -1 & -1 & 4 \\ \hline \text { R } & 0 & 5 & 5 \end{array}$	3.	4.		$\begin{aligned} & 6 . \\ & \{(7,-2),(5,4), \\ & (7,0)\} \end{aligned}$	7.	8.DR $\mathbf{2}$ 5 3 $\mathbf{5}$ 2 5

