\qquad Per: \qquad

Algebra 2

$1^{\text {st }}$ Semester Benchmark Exam Study Guide

1	Add. $8 \sqrt{3}+\sqrt{48}$	16	State whether the function has a maximum or minimum value and find it $f(x)=x^{2}+10 x-3$.
2	Graph $f(x)=-x^{2}+6 x-4$	17	Find the roots of the equation $14 x-60=-2 x^{2}$ by factoring.
3	Add. Write your answer in standard form. $\left(3 h^{7}+h^{4}\right)+\left(-h^{7}+2 h^{4}-6\right)$	18	Write a quadratic function in standard form with zeros 3 and -2 .
4	Find the product ($7 \mathrm{x}-2$) $\left(x^{4}+2 x^{2}+1\right)$	19	Given the equation $y=x n$ where $x>1$ and $0<n<1$, which statement is valid for the real values of y ? A. $y<0$ B. $y<x$ C. $y>x$ D. $y=0$
5	Solve the equation $x^{2}=5+4 x$	20	Solve the equation $x^{2}-6 \mathrm{x}-22=41$.
6	Graph the system of equations. $\left\{\begin{array}{l} -2 x+7 y=14 \\ -5 x-2 y=15 \end{array}\right.$	21	If x is a real number, which best describes the values of x for which the inequality $x^{2}>0$ is true? A. all $\mathrm{x}<0$ B. all $\mathrm{x} \leq 0$ C. all values of x D. none
7	Find the product $3 a b^{3}\left(-5 a^{2} b+a^{4} b^{3}\right)$.	22	Express $5 \sqrt{-117}$ in terms of i.
8	Graph the solution to the following inequality $\|3+2 x\|<13$	23	Find the complex conjugate of $7-2 i$
9	Graph the inequality $y<\frac{1}{2} x+5$.	24	Graph the complex number $3+6 i$.
10	Solve the system $\left\{\begin{array}{l}4 x+y=8 \\ y=2 x+2\end{array}\right.$	25	Subtract. Write the result in the form $a+b i$. $(8-4 i)-(2+3 i)$
11	Solve the system $\left\{\begin{array}{l}2 x-4 y=8 \\ -2 x-y=-18\end{array}\right.$	26	Multiply $4 i(6-9 i)$. Write the result in the form $a+b i$.
12	Determine the number of solutions for the system $\left\{\begin{array}{l}4 x+3 y=15 \\ 12 y-16 x=-60\end{array}\right.$	27	Simplify $\frac{-5+9 i}{3-3 i}$
13	Solve the system of equations $\left\{\begin{array}{l}2 x+4 y+z=10 \\ x-5 y+2 z=25 \\ -x+y+z=-5\end{array}\right.$ A. $(-5,-2,-8)$ C. $(6,4,20)$ B. $(5,-2,8)$ D. $(7,-2,4)$	28	A toy rocket is launched from the ground level with an initial vertical velocity $32 \mathrm{ft} / \mathrm{s}$. The position of the rocket can be tracked using the following equation $f(t)=-16 t^{2}+$ $32 t$, where t is the time in seconds. After how many seconds will the rocket hit the ground?
14	The parent function $f(x)=x^{2}$ is reflected over the x-axis, horizontally stretched by a factor of 4 , and translated down 3 units to create g. Use the description to write the quadratic function in vertex form.	29	Factor $x^{3}+3 x^{2}-16 x-48$ completely. A. $(x+3)\left(x^{2}+16\right)$ C. $(x+3)(x+4)(x-4)$ B. $(x-3)\left(x^{2}+16\right)$ D. $(x-3)(x+4)(x-4)$
15	Graph $y \geq x^{2}+2 x-8$.	30	Divide. $\left(x^{2}-4 x+7\right) \div(x+3)$

31	Which of the following conclusions is true about the statement? $-x^{4}=\sqrt[4]{x}$ A. The statement is always true. B. The statement is true when x is negative. C. The statement is true when $x=0$. D. The statement is never true.				41	Use a table to translate the graph 2 units down.
32	Identify the axis of symmetry for the graph of $f(x)=3 x^{2}+12 x+4$.				42	Find $\mathrm{P}(-4)$ using the Remainder Theorem. $\mathrm{P}(x)=x^{4}+3 x^{2}-22 x+16 \text { for } \mathrm{x}=-4$
33	On a recent test, Jorge wrote the equation $\frac{x^{2}-49}{x+7}=x-7$. Which of the following statements is correct about the equation he wrote? A. The equation is always true. B. The equation is always true, except when $x=-7$. C. The equation is sometimes true when $x=-7$. D. The equation is never true.				43	Completely factor the expression $250 x^{5}+54 x^{2} y^{3}$. A. $2 x^{2}(5 x+3 y)^{3}$ B. $2 x^{2}\left(125 x^{3}+27 y^{3}\right)$ C. $2 x^{2}(5 x+3 y)\left(25 x^{2}-15 x y+9 y^{2}\right)$ D. $2 x^{2}(5 x+3 y)\left(25 x^{2}+15 x y+9 y^{2}\right)$
34	Use inverse operations to write the inverse of $f(x)=x+\frac{2}{5}$				44	Subtract. Write your answer in standard form. $\left(6 x^{2}+7 x-12\right)-\left(4 x^{2}-22\right)$
35	Write the logarithmic equation $\log _{3} 27=3$ in exponential form.				45	Simplify the expression (6) ${ }^{0}(5)^{-3}$.
36	Evaluate $\log _{3} \frac{1}{81}$ by using mental math.				46	Tell whether the function $y=6(2)^{x}$ shows growth or decay. Then graph the function.
37	Simplify the expression $\log _{6} 216$.				47	Solve $16^{x-2}=64^{x}$
38	In 1995 the population of a small town was 450 . If the annual rate of increase is about 0.4%, write an expression that represents the population 6 years later.				48	Which is the first incorrect step in simplifying $\log _{2} \frac{8}{64}$? Step 1: $\log _{2} \frac{8}{64}=\log _{2} 8+\log _{2} 64$ Step 2: $\quad=3+6$ Step 3: $\quad=9$
39	Determine whether form $f(x)=a b^{x}$. If A. The second diff The data set is B. The ratio of the $f(x)$ is a linear fu C. The data set is exp D. The data set is	ntial f stant 1 33.6 cons diffe	tion of o. $\begin{gathered} 2 \\ \hline 268.8 \\ \hline \end{gathered}$ ces is ant ratio ant ratio	f the tant. 7.4 . 8.	49	A student showed the following steps in his solution of the equation below, but his answer was not correct. Which is his first incorrect step in solving this equation? $\log _{6}\left(2 x^{2}+x-6\right)-\log _{6}(2 x-3)=4$ Step 1: $\log _{6}(x+2)(2 x-3)-\log _{6}(2 x-3)=4$ Step 2: $\log _{6}(x+2)=4$ Step 1: $x+2=24$ Step 3: $x=22$
40	What is the solution to the equation $11^{x}=2$? A. $x=9$ C. $x=\log _{10} 2+\log _{10} 11$ B. $x=\frac{\log _{10} 2}{\log _{10} 11}$ D. $x=\log _{10} 9$				50	If x is a real number, for what values of x is the equation $\frac{3 x-18}{3}=x-6$ true? A. all values of x C. no values of x B. some values of x D. impossible to determine

