Study Guide Problem & Solution		New Example	
Use a table to translate the graph 2 units down.	41	Use a table to translate the graph 3 units left.	
$\begin{array}{c} 4\\ 3\\ 1\\ 2\\ 1\\ 1\\ -3-2-1\\ -3\\ -3\\ -3\\ -2\\ -3\\ -4\\ -2\\ -3\\ -4\\ -2\\ -3\\ -2\\ -3\\ -2\\ -3\\ -2\\ -2\\ -3\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2$		$\begin{array}{c} 4 \\ 3 \\ 2 \\ 1 \\ -3 -2 -1 \\ -2 \\ -3 \\ -4 \end{array}$	
Find P(-4) using the Remainder Theorem.	42	Find P(-2) using the Remainder Theorem.	
$P(x) = x^4 + 3x^2 - 22x + 16 \text{ for } x = -4.$		$P(x) = x^5 + 2x^3 - 17x + 11 \text{ for } x = -2.$	
You have two options: Plug `n' chug, or synthetic division.	1		
OPTION 1:			
$P(-4) = (-4)^4 + 3(-4)^2 - 22(-4) + 16 = 256 + 3(16) + 88 + 16$			
P(-4) = 256 + 48 + 104 = 256 + 48 + 104 = 408			
OPTION 2:			
-4 1 0 3 -22 16			
THE REMAINDER IS THE ANSWER. P(-7) - TOO	12		
Completely factor the expression $250x^3 + 54x^2y^3$.	43	Completely factor the expression $40x^2 - 320x^2y^2$.	
A. $2x^{2}(5x + 3y)^{2}$ D. $2x^{2}(125x^{3} + 27x^{3})$		A. $5x^{2}(2x - 4y)^{2}$ D. $5x^{2}(9x^{3} - 64x^{3})$	
D. $2x(125x + 27y)$ C. $2x^2(5x + 2x)(25x^2 - 15xy + 0y^2)$		D. $3x (6x - 04y)$	
C. $2x (3x + 3y)(25x^2 - 15xy + 9y^2)$ D. $2r^2(5x + 3y)(25r^2 + 15ry + 9y^2)$		C. $5x(2x - 4y)(4x - 6xy + 16y^2)$ D $5x^2(2x - 4y)(4x^2 + 8xy + 16y^2)$	
D. $2x (3x + 3y)(23x + 13xy + 3y)$		D. $3x (2x - 4y)(4x + 6xy + 10y)$	
ANSWER CHOICES COULD EQUAL THE PROBLEM. THE CORRECT			
answer is the one that multiplies to the problem AND is			
more factored. To solve this problem, multiply each			
ANSWER CHOICE AND CHECK IF IT EQUALS THE ORIGINAL.			
AFTER I MULTIPLIED EVERY ANSWER CHOICE, I FOUND THAT	1		
A. $2x^{2}(5x + 3y)^{3} = 250x^{3} + 450x^{2}y + 270xy^{2} + 54x^{3}$ NOPE.			
B. $2x^2(125x^3 + 27y^3) = 250x^3 + 54x^2y^3$ YES!!			
C. $2x^{2}(5x + 3y)(25x^{2} - 15xy + 9y^{2}) = 250x^{3} + 54x^{2}y^{3}$ YES!!			
D. $2x^2(5x + 3y)(25x^2 + 15xy + 9y^2)$			
$= 250x^{2} + 150x^{2}y + 90xy^{2} + 54x^{2}y^{2}$ NOPE.	1		
BUTH B AND C WORK, BUT C HAS TO BE THE ANSWER, BECAUSE IT IS FACTORED MORE COMPLETELY.			
Answer: C. $2x^2(5x + 3y)(25x^2 - 15xy + 9y^2)$			
Subtract. Write your answer in standard form.	44	Subtract. Write your answer in standard form.	
$(6x^2 + 7x - 12) - (4x^2 - 22)$		$(4x^2 - 2x + 9) - (8x - 10)$	
Distribute the negative, and combine like terms.			
$6x^2 + 7x - 12 - 4x^2 + 22 = 6x^2 - 4x^2 + 7x + 22 = 2x^2 + 7x + 22$			

_ Per: ____

Simplify the expression $(6)^0(5)^{-3}$.	45	Simplify the expression $(7)^{-2}(4)^0(5)^1$.
Anything to the power of 0 equals 1, so $6^0 = 1$		
Negative exponents create a fraction, so $5^{-3} = \frac{1}{5^3}$		
Multiply it out. $(6)^0(5)^{-3} = \left(1 \left(\frac{1}{5^3}\right) = \frac{1}{125}\right)$		
Tell whether the function $y = 6(2)^x$ shows growth or decay. Then graph the function. $\boxed{x y = 6(2)^x y}_{0 y = 6(2)^0 6}_{0 1 y = 6(2)^2 24}$ THIS FUNCTION SHOWS GROWTH. 20 20 15 10 10	46	Tell whether the function $y = 16(0.5)^x$ shows growth or decay. Then graph the function.
not do this if the goal is to create a precise graph. It will create an inaccurate image.	47	
Solve 16 ^{x 2} = 64 ^x . The simplest solution to this problem is to cancel the bases by making them equal each other—find a base that they have in common. In this case, the common base is 4. $16^{x-2} = 64^x$ becomes $(4^2)^{x-2} = (4^3)^x$ Now, multiply the powers. $4^{2x-4} = 4^{3x}$ Since the bases are the $\downarrow \qquad \downarrow$ same, we can cancel them. $2x - 4 = 3x$ SOLVE!! $-4 = x$ Answer: $x = -4$	47	Solve $27^{12} = 81^{2}$.
Which is the first incorrect step in simplifying $\log_2 \frac{8}{2}$?	48	Which is the first incorrect step in simplifying $\log_2 \frac{25}{2}$?
STEP 1: $\log_2 \frac{8}{64} = \log_2 8 + \log_2 64$ -Should be <u>subtraction</u>		Step 1: $\log_5 \frac{25}{125} = \log_5 25 - \log_5 125$
Step 2: $= 3 + 6$ Step 3: $= 9$		Step 2: $= 5 - 3$ Step 3: $= 2$
A student showed the following steps in his solution of the equation below, but his answer was not correct. Which is his first incorrect step in solving this equation? $\log_6(2x^2 + x - 6) - \log_6(2x - 3) = 4$	49	A student showed the following steps in his solution of the equation, but his answer was not correct. Which was his first incorrect step in solving the equation? $\log_3(x+1)(x+4) + \log_3(x+1) = 5$
Step 1 : $\log_6(x+2)(2x-3) - \log_6(2x-3) = 4$		Step 1: $\log_3(x+1)(x+4) + \log_3(x+1) = 5$
Step 2 : $\log_6(x+2) = 4$		Step 2: $\log_3(x+4) = 5$
Step 3: $x + 2 = 24$ x + 2 should equal 6 ⁴ not (6)(4)!		Step 3: $x + 4 = 15$
Step 4 : x = 22		Step 4: $x = 11$
If x is a real number, for what values of x is the equation $\frac{3x-18}{3} = x - 6 \text{ true?}$ A. all values of x C. no values of x B. some values of x D. impossible to determine MULTIPLY BOTH SIDES BY 3 TO GET RID OF THE FRACTION.	50	If x is a real number, for what values of x is the equation $\frac{5x^2 + 20x}{5x} = x + 4 \text{ true?}$ A. all values of x C. no values of x B. some values of x D. impossible to determine
3x-18 = 3(x-6) This is always true,		
3x - 18 = 3x - 18 No matter what x equals.		
	I	