Triangle Similarity and Congruence

Lesson #1: Dilations with a Compass and Straightedge

- 1. Follow the steps below to dilate ΔABC .
 - a. Lightly shade ΔABC .
 - b. Draw a ray from P through A.
 - c. Use your compass to mark on the ray A' twice as far as A from P.
 - d. Repeat this process for a ray from P to B and another ray from P to C to obtain B' and C'.
 - e. Connect A' to B' and C' to form a new triangle. In a different way, shade $\Delta A'B'C'$.

 $\Delta A'B'C'$ is a dilation of ΔABC from point P with a scale factor of 2.

Triangle Similarity and Congruence

In the following example, the center of dilation is one of the vertices of the triangle.

- 2. Follow the steps below to dilate Δ *DEF*.
 - a. Lightly shade ΔDEF .
 - b. Draw a ray from D through E.
 - c. Use your compass to mark off E' three times as far as E from D.
 - d. Repeat this process for a ray from D to F to obtain F'.
 - e. Connect E' and F' to form a new triangle. In a different way, shade $\Delta DE'F'$.

 $\Delta DE'F'$ is a dilation of ΔDEF from point P with a scale factor of 3.

3. Look back (or think back) to your two dilations in the coordinate plane from the activity *Coordinate Dilations* and compare them to these two dilations. How does the location of the center point of the dilation affect the location of the image?

Triangle Similarity and Congruence

4. Now you will investigate another special property of dilations. Look at each segment of your first two triangles, ΔABC and $\Delta A'B'C'$, and find the length of each segment in cm to the nearest tenth. Label the length on each segment and list the lengths below also.

measure of \overline{AB} =	measure of $\overline{A'B'}$ =
measure of \overline{BC} =	measure of $\overline{B'C'}$ =
measure of \overline{AC} =	measure of $\overline{A'C'}$ =

- 5. Repeat this for your second pair of triangles on page 2.
 - measure of \overline{DE} = measure of $\overline{DE'}$ =

measure of \overline{EF} =	measure of $\overline{E'F'}$ =

measure of \overline{DF} =

6. What important property of dilations can you identify from your examples?

measure of $\overline{DF'}$ =

7. Rewrite the formal definition of dilation.

Dilation: _____

8. Recall and rewrite the other important property about image lines of a dilation.