\qquad Per: \qquad
Algebra 2: $1^{\text {st }}$ Semester Benchmark Exam Example Sheet 2

Study Guide Problem \& Solution	New Example	
State whether the function has a maximum or minimum value and find it $f(x)=x^{2}+10 x-3$. Since the first term is Positive (x^{2}), it faces Up. That means it has a minimum. The min is the r-value of the VERTEX. $\begin{aligned} & x=\frac{-b}{2 a}=\frac{-10}{2(1)}=\frac{-10}{2}=-5 \text { PLUG IT IN TO FIND THE MIN @ } \mathrm{r}! \\ & f(-5)=(-5)^{2}+10(-5)-3=25-50-3=-25-3=-28 \end{aligned}$ THE MINIMUM IS AT $\gamma=-28!$	16	State whether the function has a maximum or minimum value and find it. $f(x)=-x^{2}+6 \mathrm{x}-2$
Find the roots of the equation $14 x-60=-2 x^{2}$ by factoring. ADD $-2 x^{2}$ TO BOTH SIDES TO GET THE EQUATION IN STANDARD FORM. $2 x^{2}+14 x-60=0$ Divide out the two (because x^{2} should be alone), then use X-factor! $\begin{gathered} x^{2}+7 x-30=0 \\ (x-3)(x+10)=0 \\ x-3=0 \quad \text { OR } \quad x+10=0 \\ x=3 \quad \text { OR } \quad x=-10 \\ x=\{-10,3\} \end{gathered}$	17	Find the roots of the equation $-15 x+90=-5 x^{2}$.
Write a quadratic function in standard form with zeros 3 and -2. If the zeros are 3 \& -2, then that means the factors are $(x-3) \varepsilon(x-(-2))$. So, set up the equation and multiply.$\begin{aligned} & f(x)=(x-3)(x+2) \\ & f(x)=x^{2}+2 x-3 x-6 \\ & F(x)=x^{2}-x-6 \end{aligned}$ x +2 x x^{2} $+2 x$ -3 $-3 x$ -6	18	Write the quadratic function in standard form with zeros 5 and -7.
Given the equation $y=x n$ where $x>1$ and $0<n<1$, which statement is valid for the real values of y ? A. $y<0$ B. $y<x$ C. $y>x$ D. $y=0$ PLUG in examples and try to eliminate your options. $\begin{aligned} & \operatorname{TRY} X=2 \text { \& } n=0.5 . \\ & \quad \begin{array}{l} \\ y=x n=2(0.5) \\ y=1 \end{array} \end{aligned}$ so the answer IS NOT A, since $Y>0$! The answer IS NOT C, because r < x ! The answer IS NOT D, because $Y \neq 0$! The answer Must be b. $y<x$.	19	Given the equation $a x=b y$ where $x>0, a<-1, b>1$, which statement is valid for the real values of y ? A. $y>0$ B. $y<0$ C. $y>x$ D. $y=0$
Solve the equation $x^{2}-6 \mathrm{x}-22=41$. $\begin{aligned} & x^{2}-6 x-22=41 \text { SUBTRACT 41 FROM BOTH SIDES } \\ & x^{2}-6 x-63=0 \text { USE QUADRATIC FORMULA!!! } \\ & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(-63)}}{2(1)}=\frac{6 \pm \sqrt{36+252}}{2} \\ & x=\frac{6 \pm \sqrt{288}}{2}=\frac{6 \pm \sqrt{144} \sqrt{2}}{2}=\frac{6 \pm 12 \sqrt{2}}{2}=\frac{6}{2} \pm \frac{12 \sqrt{2}}{2}=3 \pm 6 \sqrt{2} \\ & \text { THE SOLUTION IS } x=3 \pm 6 \sqrt{2}! \end{aligned}$	20	Solve the equation $x^{2}-8 \mathrm{x}-56=32$.

If x is a real number, which best describes the values of x for which the inequality $x^{2}>0$ is true? A. all $\mathrm{x}<0$ B. all $\mathrm{x} \leq 0$ C. all values of x D. none Since x^{2} will ALWAYS equal a positive number, except when $x=0$. The only way That $^{2}>0$ is if $x \neq 0$. However, that is not one of our options, so l have to choose D. None.	21	If x is a real number, which best describe the values of x for which the inequality $\frac{1}{x^{2}}>0$ is true? A. $x<0$ C. all values of x B. $x>0$ D. all values of x, except when $x=0$.
Express $5 \sqrt{-117}$ in terms of i. Test numbers to see if 117 has a perfect square factor. Since (9)(13)=117, I CAN SIMplify the radical: $5 \sqrt{-117}=5 \sqrt{-1} \sqrt{9} \sqrt{13}=(5)(3) i \sqrt{13}=151 \sqrt{13}$	22	Express $2 \sqrt{-176}$ in terms of i.
Find the complex conjugate of $7-2 i$ To create a complex conjugate, change the sign for the imaginary number. $7+21$	23	Find the complex conjugate of $3+4 i$.
Graph the complex number $3+6 i$.	24	Graph the complex number $2-5 i$.
Subtract. Write the result in the form $a+b i$. $\begin{aligned} & (8-4 i)-(2+3 i) \\ & 8-4 i-2-3 i=6-7 i \end{aligned}$	25	Subtract. Write the result in the form $a+b i$. $(2+7 i)-(3-6 i)$
Multiply $4 i(6-9 i)$. Write the result in the form $a+b i$. Distribute: $24 i-36 i^{2}=24 i-36(-1)=24 i+36=36+24 i$	26	Multiply $5 i(9-3 i)$. Write the result in the form $a+b i$.
Simplify $\frac{-5+9 i}{3-3 i}$ Multiply the bottom's complex conjugate $\begin{aligned} \left(\frac{-5+9 i}{3-3 i}\right)\left(\frac{3+3 i}{3+3 i}\right) & =\frac{-15-15 i+27 i+27 i^{2}}{9+9 i-9 i-9 i^{2}}=\frac{-15+12 i+27(-1)}{9-9(-1)} \\ & =\frac{-15+12 i-27}{9+9}=\frac{-42+12 i}{18}=\frac{-42}{18}+\frac{12 i}{18}=-\frac{7}{3}+\frac{2}{3} i \end{aligned}$	27	Simplify $\frac{3-6 i}{8+8 i}$
A toy rocket is launched from the ground level with an initial vertical velocity $32 \mathrm{ft} / \mathrm{s}$. The position of the rocket can be tracked using the following equation $f(t)=-16 t^{2}+32 t$, where t is the time in seconds. After how many seconds will the rocket hit the ground? Find the zeros of the function: $f(t)=-16 t^{2}+32 t$ $\begin{array}{ll} 0 & =-16 t^{2}+32 t \\ 0 & \text { Divide br }-16 \\ 0 & =t^{2}-2 t \end{array} \quad \text { FACTOR OUT THE } t .0 \text { SPLIT UP THE EQUATIONS \& SOLVE }$ The rocket will hit the ground at $t=2$ seconds.	28	A toy rocket is launched from the ground level with an initial vertical velocity of $48 \mathrm{ft} / \mathrm{s}$. The position of the rocket can be tracked using the following equation $f(t)=-16 t^{2}+48 t$, where t is the time in seconds. After how many seconds will the rocket hit the ground?

Factor $x^{3}+3 x^{2}-16 x-48$ completely.
A. $(x+3)\left(x^{2}+16\right)$
B. $(x-3)\left(x^{2}+16\right)$
C. $(x+3)(x+4)(x-4)$
D. $(x-3)(x+4)(x-4)$

THE EASIEST METHOD IS TO MULTIPLY EACH ANSWER CHOICE AND see which one works. Remember, though-the question asks for the COMPLETE factorization. More than one ANSWER COULD MULTIPLY TO MAKE $\mathrm{x}^{3}+3 \mathrm{x}^{2}-16 \mathrm{x}-48$. THE correct answer is the one that has the mOST factors. (YOU COULD ALSO USE SYNTHETIC DIVISION TO NARROW YOUR CHOICES, IF YOU LIKE THAT METHOD BETTER)

I tested each answer choice. C is the correct answer. C.

The factors given for C multiply to the original equation.

Divide.
$\left(x^{2}-4 x+7\right) \div(x+3)$
USE EITHER SYNTHETIC OR LONG DIVISION. Both methods are shown below. Use whichever one you prefer.

LONG DIVISION:
$x-7+\frac{28}{x+3}$
$x + 3 \longdiv { x ^ { 2 } - 4 x + 7 } \quad x (x)$ GIVES US x^{2}
$-\left(\underline{x^{2}+3 x}\right) \downarrow$ mULTiply $x(x+3)$, Then SUbTRACT DOWN.
$-7 x+7 \quad(-7)(x)$ GIVES US $-7 x$
$-(-7 x-21) \quad$ multiply $(-7)(x+3)$, then subtract.
28 This is the remainder: pUt it over $x+3$
SOLUTION: $x-7+\frac{28}{x+3}$

SYNTHETIC DIVISION:

$(x+3)$ is a LIAR, so we put -3 in the box.
The COEFFICIENTS ARE $1 x^{2}-4 x+7$

\downarrow	-3	21
1	-7	28
	$\#$	R

SOLUTION: $x-7+\frac{28}{x+3}$

Factor $x^{3}+5 x^{2}-49 x-245$ completely.
A. $(x+5)\left(x^{2}+49\right)$
B. $(x+5)\left(x^{2}-49\right)$
C. $(x+5)(x+7)(x-7)$
D. $(x-5)(x+7)(x-7)$

Divide.
$\left(x^{2}+2 x-6\right) \div(x-4)$

