\qquad Per: \qquad
Geometry: $1^{\text {st }}$ Semester Benchmark Exam
Example Sheet 2

Study Guide Problem \& Solution	New Example	
Given the lengths marked on the figure and that \angle QUS and \angle RUT are vertical angles, what postulate or theorem, if any, can be used to prove that $\Delta \mathrm{QSU} \cong \Delta \mathrm{RTU}$? (SSS, SAS, AAS, ASA, HL, or none) Vertical angles are congruent, so we can mark the angles: \angle QUS and LRUT. We can also mark the sides we know are congruent, to create a path that looks like: Answer: SAS	16	Given the lengths marked on the figure and that $\angle \mathrm{ABE}$ and $\angle \mathrm{CBD}$ are vertical angles, what postulate or theorem, if any, can be used to prove that $\triangle \mathrm{ABE} \cong \triangle \mathrm{CBD}$?
Find $\mathrm{m} \angle \mathrm{PQR}$. These are Same Side Interior (S.S.I.) angles-ther're next to each other-, which means they add up to 180° (SUPPLEMENTARY). $\begin{array}{rlrl} 4 x-20+x+80 & =180 \\ 5 x+60 & =180 \\ 5 x & =120 \\ \text { PLUG IT IN! } & & m \angle P Q Q R=x+80 \\ x & & & m \angle P Q R=104^{\circ} \\ \hline \end{array}$	17	Find $m \angle L M N$.
$F G H I$ is a parallelogram. Find $G H$. Since it is a parallelogram the opposite parts are Congruent. SO, set them equal. $\begin{array}{rlr} 5 \mathrm{x}+8=7 \mathrm{x}-10 & \\ -5 \mathrm{x} \quad-5 \mathrm{x} & & \\ \hline 8=2 \mathrm{x}-10 & & 7 \mathrm{x}-10 \\ +10 \quad+10 \\ \hline 18=2 \mathrm{x} & & G H=7(9)-10 \\ 9=\mathrm{x} & & G H=63-10 \\ \mathrm{x}=9 & G H=53 \end{array}$	18	$D U S T$ is a parallelogram. Find $U S$.

Find the value of x. Express your answer in simplest radical form. $\begin{array}{rlrl} a^{2}+b^{2} & =c^{2} & \sqrt{20} & =x \\ 2^{2}+4^{2} & =x^{2} & \sqrt{4} \sqrt{5} & =x \\ 4+16 & =x^{2} & 2 \sqrt{5} & =x \\ 20 & =x^{2} & x & =2 \sqrt{5} \end{array}$	19	Find the value of x. Express your answer in simplest radical form.				
Find the area of the figure. $\begin{aligned} & A=\frac{b h}{2} \\ & A=\frac{(8)(x-7)}{2} \\ & A=4(x-7) \\ & A=4 x-28 \end{aligned}$	20	Find the area of the figure.				
Find the circumference of the circle. Use 3.14 for π, and round your answer to the nearest tenth. $\begin{aligned} & C=2 \pi r \\ & C=2(3.14)(6) \\ & C=6.28(6) \\ & C \approx 37.68 \\ & C \approx 37.7 \mathrm{~cm} \end{aligned}$	21	Find the circumference of the circle. Use 3.14 for π, and round your answer to the nearest tenth.				
Given that $\triangle \mathrm{PQR} \cong \Delta \mathrm{LMR}$ and $\mathrm{m} \angle \mathrm{M}=42^{\circ}$, find $\mathrm{m} \angle \mathrm{PRQ}$.	22	Given that $\triangle \mathrm{CRH} \cong \triangle \mathrm{AIH}, \mathrm{m} \angle \mathrm{A}=70^{\circ}$, and $\mathrm{m} \angle \mathrm{R}=60^{\circ}$ find $\mathrm{m} \angle \mathrm{CHR}$.				
Identify one pair of each of the following: a) Parallel Segments $\overline{L Q}\\|\overline{M R} ; \overline{O T}\\| \overline{N S} ; \overline{L M}\\|\overline{Q R} ; \overline{O N}\\| \overline{T S} .$. b) Perpendicular Segments $L Q \perp L M ; M N \perp N S ; O T \perp O P$ c) Skew Segments $\overline{L M} \& \overline{N S} ; \overline{O P} \& \overline{U R} ; \overline{Q R} \& \overline{O T}$	23	Identify one pair of each of the following: a) Parallel Segments b) Perpendicular Segments c) Skew Segments				

Find $\mathrm{m} \angle \mathrm{ABC}$. Corresponding Angles (C.A) are congruent. $\begin{aligned} & 2 \mathrm{x}+37=3 \mathrm{x}-13 \\ & -2 \mathrm{x} \quad-2 \mathrm{x} \\ & \hline 37=\mathrm{x}-13 \\ & +13+13 \\ & \hline 50=\mathrm{x} \end{aligned}$ $\mathrm{m} \angle \mathrm{ABC}=3 \mathrm{x}-13$ $\mathrm{m} \angle \mathrm{ABC}=3(50)-13$ plug it in! $\mathrm{m} \angle \mathrm{ABC}=150-13$ $m \angle A B C=137^{\circ}$	24	Find $m \angle L M N$.
Identify the property that justifies each statement. a) $x=3$. So $4 x=4(3)$ Substitution b) $\mathrm{GH}=\mathrm{GH}$ Reflexive Prop. of Equality c) $\angle \mathrm{ABC} \cong \angle \mathrm{DEF}$ and $\angle \mathrm{DEF} \cong \angle \mathrm{GHI}$. So $\angle \mathrm{ABC} \cong \angle \mathrm{GHI}$ Transitive Prop. of Congruence d) $17=\mathrm{AB}$, so $\mathrm{AB}=17$ Symmetric Prop. of Equality	25	Create an example for each of the following properties. a) Reflexive Property of CONGRUENCE b) Symmetric Property of EQUALITY c) Transitive Property of CONGRUENCE d) Substitution Property of EQUALITY
Given isosceles trapezoid $V W X Y$ with $\overline{V Y} \cong \overline{W X}$, $V Z=3.6$, and $W Y=7.4$. Find $Z X$. Diagonals are congruent, so VX $=\mathrm{WY}$. $\mathrm{ZX}=7.4-3.6=3.8$	26	Given isosceles trapezoid $J U S T$ with $\overline{J T} \cong \overline{U S}, T Y=4.7$, and $R S=11.2$. Find $Y U$.
$\triangle L M N$ is an isosceles triangle with vertex $\angle N . m \angle L=$? Determine the measure of the angle next to the 140° angle. They make a line, so... $\mathrm{m} \angle N M L=180^{\circ}-140^{\circ}=40^{\circ}$ The triangle is isosceles, so the base angles are the same. $m \angle L=40^{\circ}$	27	$\triangle P Q R$ is an isosceles triangle with vertex $\angle R . m \angle P=$?
Given $\triangle D E F \sim \Delta G H I$, find the area of $\triangle G H I$. Area is always squared. To determine the size of a similar AREA, SET UP A FRACTION USING the sides and SQUARE it. Set it equal to the AREA fraction. $\left(\frac{10}{15}\right)^{2}=\frac{12}{x}$ AREA of $\Delta G H /$ is $27 \operatorname{Ft}^{2}$ $\begin{aligned} \left(\frac{2}{3}\right)^{2} & =\frac{12}{x} \\ \frac{4}{9} & =\frac{12}{x} \end{aligned}$ CROSS MULTIPLY! $4 x=108$ $x=27$	28	Given $\triangle D O G \sim \triangle C A T$, find the area of $\triangle C A T$.

Geometry Example Sheet 2, Page 4

Classify $\triangle A B C$ by its angle measures, given $\mathrm{m} \angle A C B=55^{\circ}$, $\mathrm{m} \angle B C D=55^{\circ}$, and $\mathrm{m} \angle A B D=20^{\circ}$.

In ORDER TO CLASSIFY $\triangle A B C$ bY ITS ANGLES, WE NEED MORE information about its angles. If ther're all acute, then the triangle is acute. If one of the angles is right, it's a right. If one of the angles is obtuse, it's obtuse.
Find the missing angle in $\triangle C B D$.

$$
\begin{aligned}
55^{\circ}+55^{\circ}+m \angle C B D & =180^{\circ} \\
110^{\circ}+m \angle C B D & =180^{\circ} \\
m \angle C B D & =70^{\circ}
\end{aligned}
$$

$\angle B$ is made of 2 angles. Add them up to find its measure:

$$
\begin{aligned}
m \angle C B D+m \angle A B D & =m \angle B \\
70^{\circ}+20^{\circ} & =m \angle B \\
90^{\circ} & =m \angle B \\
m \angle B & =90^{\circ}
\end{aligned}
$$

$m \angle B$ is 90°, so $\triangle A B C$ is A RIGHT TRIANGLE.
Find the values of x and y. Express your answers in simplest radical form.

Find the values of x and y. Express your answers in the simplest radical form.

