\qquad Per: \qquad
Algebra 2: $1^{\text {st }}$ Semester Benchmark Exam Example Sheet 3

Study Guide Problem \& Solution		New Example
Which of the following conclusions is true about the statement? $-x^{4}=\sqrt[4]{x}$ A. The statement is always true. C. It is true when $x=0$. B. It is true when x is negative. D. The statement is never true. Test each conclusion. A. Is it always true? B. True when x is neg? $\begin{aligned} x=1: \quad-(1)^{4} & =\sqrt[4]{(1)} \\ -1 & =1 \quad \text { NO! } \end{aligned}$ $\begin{aligned} x=-1: \quad-(-1)^{4} & =\sqrt[4]{(-1)} \\ 1 & =1 i \quad \text { NO! } \end{aligned}$ C. True when $x=0$? $\begin{aligned} -(0)^{4} & =\sqrt[4]{(0)} \\ 0 & =0 \quad \text { YES! } \end{aligned}$ THE ANSWER is C.	31	Which of the following conclusions is true about the statement? $x^{-2}=x^{2}$ A. The statement is always true. B. The statement is true when x is positive. C. The statement is true when $x=-1,0$, or 1 . D. The statement is never true.
Identify the axis of symmetry for the graph of $f(x)=3 x^{2}+12 x+4$ THE AXIS OF SYMMETRY IS AT $x=\frac{-b}{2 a}$ So... $x=\frac{-12}{2(3)}=\frac{-12}{6}=-2$ Axis of Symm. is at $x=-2$.	32	Identify the axis of symmetry for the graph of $f(x)=4 x^{2}+20 x+7$.
On a recent test, Jorge wrote the equation $\frac{x^{2}-49}{x+7}=x-7$. Which of the following statements is correct about the equation he wrote? A. The equation is always true. C. It is true when $x=-7$. B. The equation is always true, D. The equation is never true. except when $x=-7$. First, identify anything that x CAN never be. Then, solve the problem to see how many solutions there are (0,1, inf.) The denominator CAN'T be zero, so $\mathrm{x}+7 \neq 0 . \mathrm{x} \neq 7$ $\begin{aligned} & \frac{x^{2}-49}{x+7}=x-7 \\ & x^{2}-49=(x-7)(x+7) \\ & x^{2}-49=x^{2}-49 \end{aligned}$ SINCE IT EQUALS ITSELF, B. the equation is always true, EXCEPT WNEN $X=-7$.	33	On a recent test, Sarah wrote the equation $\frac{3 x+12}{x+4}=3$. Which of the following statements is correct about the equation he wrote? A. The equation is always true. B. The equation is always true, except when $x=-4$. C. The equation is sometimes true when $x=-4$. D. The equation is never true.
Use inverse operations to write the inverse of $f(x)=x+\frac{2}{5}$ $x=f^{-1}(x)+\frac{2}{5} \quad$ First, switch the x and the $F(x)$. $x=f^{-1}(x)+\frac{2}{5} \quad$ THEN, SOLVE FOR $F^{-1}(x)!$$-\frac{2}{5}$ $-\frac{2}{5}$ $x-\frac{2}{5}=f^{-1}(x) \quad \rightarrow \quad F^{-1}(x)=x-\frac{2}{5}$ is The inverse	34	Use inverse operations to write the inverse of $f(x)=x-\frac{3}{4}$
Write the logarithmic equation $\log _{3} 27=3$ in exponential form. Base stays down. Switch the exponent with the product. $\log _{3} 27=3 \rightarrow 3^{3}=27$	35	Write the logarithmic equation $\log _{5} 25=2$ in exponential form.

Evaluate $\log _{3} \frac{1}{81}$ by using mental math. As AN EXPONENT, IT WOULD be: $3^{?}=\frac{1}{81}$ $3^{?}=\frac{1}{81}=\frac{1}{3^{4}}=3^{-4} \quad \text { NEGATIVE EXPONENTS MAKE FRACTIONS, }$ Answer: $\log _{3} \frac{1}{81}=-4$	36	Evaluate $\log _{7} \frac{1}{49}$ by using mental math.
Simplify the expression $\log _{6} 216$. $\begin{aligned} & 6=216 \\ & ?=3 \end{aligned} \quad \text { LoG }_{6} 216=3$	37	Simplify the expression $\log _{4} 256$.

In 1995 the population of a small town was 450. If the annual rate of increase is about 0.4%, write an expression that represents the population 6 years later.
Use the expression $P(1 \pm R)^{T}$, where P is the original amount, R is the rate of increase or decrease, and t is time.
$\mathrm{P}=450, \mathrm{r}=+0.4(+$ because it's an increase $)$, and $\mathrm{t}=6$ years

$$
450(1+0.4)^{6} \rightarrow 450(1.4)^{6}
$$

Determine whether f is an exponential function of x of the form $f(x)=a b^{x}$. If so, find the constant ratio.

x	-1	0	1	2	3
$f(x)$	0.525	4.2	33.6	268.8	2150.4

WRite an exponential function of the type $f(x)=a b^{x}$. figure out the value of a and b to create the equation. THEN PLUG THE REMAINING POINTS IN TO SEE IF IT WORKS!

$$
\begin{aligned}
& f(x)=a b^{x} \quad \text { DETERMINE WHAT } a \text { IS BY } \\
& 4.2=a b^{0} \quad \text { PLUGGING IN THE POINT (0. 4.2) } \\
& 4.2=a(1) \\
& 4.2=a \\
& \text { DETERMINE WHAT } b \text { IS BY } 33.6=4.2 b^{1} \\
& \text { PLUGGING IN } a=4.2 \text { AND } \quad 33.6=4.2 b \\
& \text { THE POINT (1, 33.6) } \quad 8=b
\end{aligned}
$$

Now, you can create your equation. $\rightarrow f(x)=4.2(8)^{x}$
Check that the equation works for $x=-1, x=2$, and $x=3$.
$f(x)=4.2(8)^{1}=0.525$ Yes. Next... $f(x)=4.2(8)^{2}=268.8 \quad$ Yup.
LAST ONE... $f(x)=4.2(8)^{3}=2150.4$ IT WORKS!!
D. THE DATA SET IS EXPONENTIAL WITH A CONSTANT RATIO OF 8.

What is the solution to the equation $11^{x}=2$?
A. $x=9$
C. $x=\log _{10} 2+\log _{10} 11$
B. $x=\frac{\log _{10} 2}{\log _{10} 11}$
D. $x=\log _{10} 9$
$11^{x}=2$
$\log _{10} 11^{x}=\log _{10} 2$
The exponent moves to the
$x \log _{10} 11=\log _{10} 2 \quad$ FRONT OF THE LOG.

$$
x=\frac{\log _{10} 2}{\log _{10} 11} \quad \text { DIVIDE BOTH SID }
$$

DIVIDE BOTH SIDES bY LOG 1011

Answer: B
A. $x=2$
B. $x=\frac{\log _{10} 5}{\log _{10} 7}$
C. $x=\log _{10} 5+\log _{10} 7$
D. $x=\log _{10} 2$

