Name: _____ Algebra 2: 1st Semester Benchmark Exam Example Sheet 3

Study Guide Problem & Solution		New Example	
Which of the following conclusions is true about the statement?	31	Which of the following conclusions is true about the	
$-x^4 = \sqrt[4]{x}$		statement? $x^{-2} = x^2$	
A. The statement is always true. C. It is true when $x = 0$.		A. The statement is always true.	
B. It is true when x is negative. D. The statement is never true.		B. The statement is true when $x = 1.0$ or 1	
A. Is it always true? B. True when x is neg?		D. The statement is never true.	
$-(1)^4 = \frac{4}{(1)}$ $-(-1)^4 = \frac{4}{(-1)}$			
$x=1: (1) = \sqrt{(1)} \qquad x = -1: (1) = \sqrt{(1)} \qquad 1 = 1i NO!$			
C. True when x=0? $-(0)^4 = \sqrt[4]{(0)}$ 0 = 0 YES/			
The answer is C.			
Identify the axis of symmetry for the graph of	32	Identify the axis of symmetry for the graph of	
$f(x) = 3x^2 + 12x + 4.$		$f(x) = 4x^2 + 20x + 7.$	
The axis of symmetry is at $x = \frac{-b}{2a}$			
So $x = \frac{-12}{2(3)} = \frac{-12}{6} = -2$ Axis of Symm. is at $x = -2$.			
On a recent test, Jorge wrote the equation $\frac{x^2 - 49}{x + 7} = x - 7$. Which of	33	On a recent test, Sarah wrote the equation $\frac{3x+12}{x+4} = 3$.	
the following statements is correct about the equation he wrote?		Which of the following statements is correct about the	
A. The equation is always true. C. It is true when $x = -7$.		equation he wrote?	
B. The equation is always true, D. The equation is never true.		A. The equation is always true. B. The equation is always true, except when $x = -4$	
except when $x = -7$.		C. The equation is sometimes true when $x = -4$.	
First, identify anything that x CAN NEVER be. Then, solve		D. The equation is never true.	
THE PROBLEM TO SEE HOW MANY SOLUTIONS THERE ARE $(0, 1, \text{ INF.})$ The denominator $(2AN)^2$ The zero, so $x + 7\pi^2$, $x\pi^2$			
$x^2 = 40$			
$\frac{x^{2}-49}{x+7} = x-7$ Since it equals itself,			
$x^{2} - 49 = (x - 7)(x + 7)$ B . THE EQUATION IS ALWAYS TRUE			
$x^2 - 49 = x^2 - 49$ EYCEPT WNEN X = -7			
	24	Use inverse exerctions to write the inverse of	
Use inverse operations to write the inverse of $f(x) = x + \frac{2}{5}$	54	3	
s-le > 2 =		$f(x) = x - \frac{1}{4}$	
$x = f^{-1}(x) + - First, switch the x and the f(x).$			
$x = f^{-1}(x) + \frac{2}{5}$ Then, solve for $f^{-1}(x)!$			
$-\frac{2}{2}$ $-\frac{2}{2}$			
_55			
$x - \frac{2}{5} = f^{-1}(x) \rightarrow F^{-1}(x) = x - \frac{2}{5}$ is the inverse			
Write the logarithmic equation $\log_3 27=3$ in exponential form.	35	Write the logarithmic equation $\log_5 25=2$ in exponential	
Base stays down. Switch the exponent with the product.		form.	
$\log_3 27=3 \rightarrow 3^3=27$			

Evaluate $\log_3 \frac{1}{81}$ by using mental math.	36	Evaluate $\log_7 \frac{1}{40}$ by using mental math.
As an exponent, it would be: $3^2 = \frac{1}{81}$		49
$3^{2} = \frac{1}{81} = \frac{1}{3^{4}} = 3^{-4}$ NEGATIVE EXPONENTS MAKE FRACTIONS, so the exponent is - 4.		
Answer: log ₃ <mark>1</mark> = -4		
Simplify the expression $\log_6 216$.	37	Simplify the expression $\log_4 256$.
$6^{?} = 216$ LOG ₆ 216 = 3 ? = 3		
In 1995 the population of a small town was 450. If the annual rate of increase is about 0.4%, write an expression that represents the population 6 years later. Use THE EXPRESSION $P(1\pm R)^T$, where P is THE ORIGINAL AMOUNT, R is THE RATE OF INCREASE OR DECREASE, AND T IS TIME. P = 450, r = +0.4 (+ because it's an increase), and t = 6 years $450(1+0.4)^6 \rightarrow 450(1.4)^6$	38	In 1990 the population of a small town was 1000. If the annual rate of increase is about 0.6%, write an expression that represents the population 7 years later.
Determine whether <i>f</i> is an exponential function of <i>x</i> of the form $f(x) = x e^{ix}$. If we find the constant action	39	Determine whether f is an exponential function of x of the form $f(x) = ab^x$. If so, find the constant ratio
$f(x) = ab^x.$ If so, find the constant ratio. $f(x) = ab^x.$ If so, find the constant ratio. $f(x) = ab^x.$ $f(x) = 0.525 4.2 33.6 268.8 2150.4$ WRITE AN EXPONENTIAL FUNCTION OF THE TYPE $f(x) = ab^x.$ FIGURE OUT THE VALUE OF a AND b TO CREATE THE EQUATION. THEN PLUG THE REMAINING POINTS IN TO SEE IF IT WORKS! $f(x) = ab^x DETERMINE \text{ WHAT } a \text{ IS BY}$ $4.2 = ab^0 PLUGGING \text{ IN THE POINT (0, 4.2)}$ $4.2 = a(1)$ $4.2 = a$ $DETERMINE \text{ WHAT } b \text{ IS BY } 33.6 = 4.2b^1$ $PLUGGING \text{ IN } a = 4.2 \text{ AND } 33.6 = 4.2b$ $THE POINT (1, 33.6) 8 = b$ $Now, YOU CAN CREATE YOUR EQUATION. \rightarrow f(x) = 4.2(8)^x$ $CHECK THAT THE EQUATION WORKS FOR x = -1, x = 2, \text{ AND } x = 3.$ $f(x) = 4.2(8)^1 = 0.525 \text{ YES. NEXT } f(x) = 4.2(8)^2 = 268.8 \text{ YUP.}$ $LAST ONE f(x) = 4.2(8)^3 = 2150.4 \text{ IT WORKS!!}$	10	the form $f(x) = ab^x$. If so, find the constant ratio.
What is the solution to the equation $11^x = 2$?	40	What is the solution to the equation $7^x = 5$?
A. $x = 9$ $\log_{10} 2 + \log_{10} 11$		A. $x = 2$ $\log_{10} 5 + \log_{10} 7$
B. $x = \frac{10g_{10} 2}{\log_{10} 11}$ D. $x = \log_{10} 9$ $11^x = 2$		B. $x = \frac{\log_{10} 5}{\log_{10} 7}$ D. $x = \log_{10} 2$
$\log_{10} 11^x = \log_{10} 2$ The exponent moves to the		
$x \log_{10} 11 = \log_{10} 2$ FRONT OF THE LOG. log 2 DIVIDE BOTH SIDES BY LOG 11		
$x = \frac{\log_{10} 2}{\log_{10} 11}$ TO GET X ALONE		
Answer: B		