\qquad Per: \qquad

Geometry: $1^{\text {st }}$ Semester Benchmark Exam Example Sheet 3

Study Guide Problem \& Solution		New Example
The rectangular tiles on the floor are 5 in. wide and 6 in. long. If there are 50 tiles on the floor, what is the area of the tile floor? Find the area of one tile. \square 5 in. $\begin{aligned} & A_{t}=b h=(6)(5) \\ & A_{t}=30 \mathrm{in}^{2} \end{aligned}$ Multiply the area of one tile by the number of tiles (50). $\mathrm{A}=(30)(50)=1500 \mathrm{~N}^{2}$	31	The rectangular tiles on the floor are 3 in . wide and 7 in . long. If there are 40 tiles on the floor, what is the area of the floor?
Tell whether the figure is a polygon. If it is a polygon, name it by the number of its sides. The figure is closed and has straight sidesYES, IT'S A POLYGON. 8 SIDES MEANS IT'S AN OCTAGON.	32	Tell whether the figure is a polygon. If it is a polygon, name it by the number of sides.
Find the coordinates of the midpoint of $P M$ with endpoints $P(4,6)$ and $M(9,-4)$. $\begin{aligned} \left(M_{x}, M_{y}\right) & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\ & =\left(\frac{4+9}{2}, \frac{6+-4}{2}\right) \\ & =\left(\frac{13}{2}, \frac{2}{2}\right) \\ & =(6.5,1) \text { OR }\left(\frac{13}{2}, 1\right) \end{aligned}$	33	Find the coordinates of the midpoint of $A M$ with endpoints $A(1,5)$ and $M(-3,9)$.
Draw the image of $\Delta V W X$ after the translation $(x, y) \rightarrow(x+2, y-3)$ The rule tells us to add 2 to each x (MOVE IT 2 UNITS RIGHT) AND TO SUBTRACT 3 fROM EACH r (MOVE IT 3 UNITS DOWN) Change each point (use the rulf) thfn graph thf imasf. $\begin{aligned} V(-3,2) & \rightarrow(-3+2,2-3) \\ \rightarrow & V^{\prime}(-1,-1) \\ W(-4,-1) & \rightarrow(-4+2,-1-3) \\ & \rightarrow W^{\prime}(-2,-4) \\ X(-2,-1) & \rightarrow(-2+2,-1-3) \\ & \rightarrow X^{\prime}(0,-4) \end{aligned}$	34	Draw the image of $\triangle P A R$ after the translation $(x, y) \rightarrow(x-4, y+1)$.

Laura folded a triangular sheet of paper into the shape shown. Find $\mathrm{m} \angle N L O$, given $\mathrm{m} \angle L O N=50^{\circ}, \mathrm{m} \angle O N P=35^{\circ}$, and $\mathrm{m} \angle N M P=85^{\circ}$. Start by breaking it up into simpler figures-3 small triangles, 1 big triangle (unfold it), and a line. Work with any of these figures-choose one that can be solved. 3 SMALL TRIANGLES THE UNFOLDED TRIANGLE AND THE LINE $m \angle L+m \angle M+m \angle N=180^{\circ}$ The unfolded triangle is only (triangle adds to equal 180) MISSING ONE ANGLE- $\angle L$, THE ONE WE'RE LOOKING FOR. $m \angle N L O=60$ $\begin{gathered} m \angle L+85^{\circ}+35^{\circ}=180^{\circ} \\ m \angle L+120^{\circ}=180^{\circ} \\ m \angle L=60^{\circ} \end{gathered}$	35	Frank folded a triangular sheet of paper into the shape shown. Find $\mathrm{m} \angle R A W$, given $\mathrm{m} \angle L C R=85^{\circ}$, $\mathrm{m} \angle C R L=55^{\circ}$, and $\mathrm{m} \angle A R W=80^{\circ}$.
What is $\mathrm{m} \angle \mathrm{ABE}$? Find m $\angle C D B$. It's forms a linear pair with the 95° angle. $\mathrm{m} \angle \mathrm{CDB}=180^{\circ}-95^{\circ}=85^{\circ}$ Find m<dBC. Since we know two angles in the triangle ($\boldsymbol{m} \angle C D B=85^{\circ} \varepsilon \boldsymbol{m} \angle D C B=35^{\circ}$), wE CAN FIND THE THIRD. $85^{\circ}+35^{\circ}=120^{\circ} \quad \mathrm{m} \angle \mathrm{DBC}=180^{\circ}-120^{\circ}=60^{\circ}$ Since $\angle D B C \& \angle A B E$ are vertical angles, they're congruent. So, $m \angle D B C=m \angle A B E=60^{\circ}$	36	What is $\mathrm{m} \angle \mathrm{BGU}$?
Find the measure of each exterior angle of a regular octagon. The exterior angle sum of any regular polygon is 360°. An octagon has 8 sides $\& 8$ angles. To find the measure of ONE of the angles, divide the total (360 ${ }^{\circ}$) bY the number of ANGLES (8). $360^{\circ} \div 8=45^{\circ}$	37	Find the measure of each exterior angle of a regular dodecagon.
What type of triangle is formed by the points $\mathrm{A}(3,2), \mathrm{B}(4,1)$, and C(-5, 4)? (right, equilateral, isosceles, or scalene) Graph it: All of the sides are different, so Scalene.	38	What type of triangle is formed by the points $\mathrm{A}(0,3)$, $\mathrm{B}(2,-1)$, and $\mathrm{C}(-4,0)$? (right, equilateral, isosceles, or scalene)

Identify the transformation from figure 1 to figure 2. For each INCORRECT response, draw or describe what figure 2 would look like.

a) The transformation is a 90° rotation No!

b) The transformation is a reflection.

No!
$O R$

c) The transformation is a translation.

A figure has vertices at $A(-4,2), B(6,8), \& C(8,2)$. After a transformation, the image of the figure has vertices at $A^{\prime}(2,4), B^{\prime}(8$, $-6), \& C^{\prime}(2,-8)$. Identify the transformation.

a) THE TRANSFORMATION IS A 90° ROTATION.
b) The transformation is a 180° rotation.
c) The transformation is a reflection.
d) The transformation is a translation.

Identify the transformation from figure 1 to figure 2 . For each INCORRECT response, draw or describe what figure 2 would look like.

Figure 1 Figure 2
a) The transformation is a 90° rotation.
b) The transformation is a reflection.
c) The transformation is a translation.

A figure has vertices at $D(-1,-1), E(1,-3), \& F(2,0)$. After a transformation, the image of the figure has vertices at $D^{\prime}(-1,1), E^{\prime}(1,3), \& F^{\prime}(2,0)$. Identify the transformation.

a) The transformation is a 90° rotation.
b) The transformation is a 180° rotation.
c) The transformation is a reflection.
d) The transformation is a translation.

