Name: $\qquad$ Per: $\qquad$

> Geometry: $1^{\text {st }}$ Semester Benchmark Exam Example Sheet 4

| Study Guide Problem \& Solution | New Example |  |
| :---: | :---: | :---: |
| The lengths of two sides of a triangle are 5 inches and 11 inches. Find the range of possible lengths for the third side, $s$. <br> The third side must be long enough to connect the OTHER TWO (BIGGER THAN THE SPACE BETWEEN THEM-SUBTRACT) AND SHORT ENOUGH THAT THE OTHER TWO CAN BOTH CONNECT TO IT (SMALLER THAN THE TOTAL DISTANCE OF THE OTHERS-ADD). <br> So... Subtraction $<3^{\text {rd }}$ side $<$ Addition $\begin{aligned} 11-5 & <s<11+5 \\ 6 & <s<16 \end{aligned}$ | 41 | The lengths of two sides of a triangle are 3 inches and 12 inches. Find the range of possible lengths for the third side, $s$. |
| The diagonal of a square is 8 inches. How long is one side? <br> Use the Pythagorean theorem. $\begin{aligned} & x^{2}+x^{2}=8^{2} \\ & 2 x^{2}=64 \\ & x^{2}=32 \\ & x=\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2} \end{aligned}$ | 42 | The diagonal of a square is 12 inches. How long is one side? |
| The sum of the exterior angles of a polygon is two times the sum of the interior angles. What type of polygon is it? <br> a) Triangle - 3 sIDES <br> b) Quadrilateral - 4 sIDES <br> c) Pentagon - $\mathbf{5}$ SIDES <br> d) Hexagon - 6 sides <br> e) Decagon - 10 sides <br> THE FORMULA FOR THE SUM OF THE INTERIOR angles is $(n-2)(180)$. <br> $n=$ nUMBER OF SIDES. <br> For this problem, the sum of the exterior angles (360 ${ }^{\circ}$ ) = 2 times the sum of the interior angles (n-2)(180). <br> Set up the equation and solve for the number of sides. $\begin{aligned} \text { ext. } \angle \text { sum } & =2(\mathrm{int} . \angle \mathrm{sum}) & & \\ 360 & =2[(\mathrm{n}-2)(180)] & & \leftarrow \text { Plugged in the ext. \& int. } \angle \mathrm{s} \\ 180 & =(\mathrm{n}-2)(180) & & \leftarrow \text { Divided both sides br } 2 \\ 1 & =\mathrm{n}-2 & & \leftarrow \text { Divided both sides br } 180 \\ 3 & =\mathrm{n} & & \leftarrow \text { ADDed } 2 \text { то both sides } \end{aligned}$ <br> THE NUMBER OF SIDES IS 3! IT's A TRIANGLE! | 43 | The sum of the exterior angles of a polygon is half of the sum of the interior angles. What type of polygon is it? |
| What makes a triangle similar? <br> Triangles are similar when the corresponding angles are CONGRUENT AND THE CORRESPONDING SIDES ARE PROPORTIONAL (fractions are equal). TO prove ther're similar, you need to have SSS (all 3 sides), SAS (2 sides and the angle between), or AA (2 angles). <br> Are all obtuse triangles similar? <br> No. All angles between $90^{\circ} \& 180^{\circ}$ are "obtuse." You need two CONGRUENT ANGLES TO PROVE SIMILARITY. <br> "Obtuse" refers to one angle, and doesn't tell its size. <br> Are all acute triangles similar? <br> No. All angles between $0^{\circ} \& 90^{\circ}$ are "acute." You need two CONGRUENT ANGLES TO PROVE SIMILARITY. "ACUTE" refers to only one angle, and doesn't tell its measure. <br> Are all isosceles triangles similar? <br> No. Isosceles means that ONE triangle has two congruent | 44 | a. $\quad \triangle \mathrm{LMN}$ and $\triangle \mathrm{DEF}$ are both acute. $\mathrm{m} \angle \mathrm{D}=\mathrm{m} \angle \mathrm{L}$. Are they similar? <br> b. $\triangle \mathrm{LMN}$ and $\triangle \mathrm{DEF}$ are both obtuse. $\mathrm{m} \angle \mathrm{D}=\mathrm{m} \angle \mathrm{L}$. Are they similar? <br> c. $\Delta \mathrm{LMN}$ and $\triangle \mathrm{DEF}$ are both isosceles. $\mathrm{m} \angle \mathrm{D}=\mathrm{m} \angle \mathrm{F}, \mathrm{m} \angle \mathrm{L}=\mathrm{m} \angle \mathrm{M} \& \mathrm{~m} \angle \mathrm{D}=\mathrm{m} \angle \mathrm{L}$. Are they similar? |


| angles. That set of congruent angles may not be the same as the congruent angles on the Other triangle. <br> hOWEVER, IF THE VERTEX ANGLE (on both triangles) matches, Then the isosceles triangles muSt be similar. |  |  |
| :---: | :---: | :---: |
| Find the length of the line segment with endpoints $(-2,5)$ and $(1,11)$. Write your answer in the simplest radical form. $\begin{aligned} & d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\ & d=\sqrt{(1-(-2))^{2}+(11-5)^{2}}=\sqrt{(3)^{2}+(6)^{2}}=\sqrt{9+36}=\sqrt{45}=\sqrt{9} \sqrt{5} \\ & d=3 \sqrt{5} \end{aligned}$ | 45 | Find the length of the line segment with endpoints $(-2,8)$ and $(4,12)$. Write your answer in the simplest radical form. |
| A sewing club is making a quilt consisting of 25 squares with each side of the square measuring 30 centimeters. If the quilt has 5 rows and 5 columns, what is the perimeter of the quilt? <br> The quilt would have 5 rows $\varepsilon$ <br> 5 columns like the picture to the right. The side of each square is 30 , SO EACH SIDE OF THE QUILT IS: $(30)(5)=150 \mathrm{~cm}$ <br> 150 <br> Perimeter is the sum of the sides, so: $P=150+150+150+150=600 \mathrm{~cm}$ | 46 | A sewing club is making a quilt consisting of 16 squares with each side of the square measuring 20 centimeters. If the quilt has 4 rows and 4 columns, what is the perimeter of the quilt? |


| The Properties You Need to Know for the Final |  |  |
| :---: | :---: | :---: |
| Angle Addition Postulate | Definition of Supplementary Angles | Reflexive Property of Equality |
| $m \angle A B C+m \angle C B D=m \angle A B D$ | $m \angle A+m \angle B=180^{\circ}$ | $4=4 O R 2 x=2 x O R A B=A B$ |
| Corresponding Angles Postulate | Linear Pair Theorem | Subtraction Property of Equality |
| $\frac{1}{2}<1 \cong \angle 2$ | $1 / 2 \quad m \angle 1+m \angle 2=180^{\circ}$ | $\begin{aligned} \text { IF } 2 x+4 & =6, \text { THEN } \\ 2 x & =2 \end{aligned}$ <br> (subtracted 4 from both sides) |
| Definition of Complementary Angles $m \angle G+M \angle H=90^{\circ}$ | Perpendicular Transversal Theorem If a transversal is perpendicular to one parallel line, then it is PERPENDICULAR TO THE OTHER LINE. | Transitive Property of Equality IF $A B=B C A N D B C=C D$. then $A B=C D$ |
| Definition of Congruence $\begin{array}{lll} P Q=R S & \overline{P Q} \cong \overline{R S} \\ \overline{P Q} \cong \overline{R S} & \text { OR } & \\ P Q=R S \end{array}$ | Segment Addition Postulate $X Y+Y Z=X Z$ | Vertical Angles Theorem $\frac{1 / 4}{2 / 3} \quad \angle 1 \cong \angle 3 \text { OR } \angle 2 \cong \angle 4$ |
|  | Substitution Property of Equality If $x=4$, THEN $5 x-2=5(4)-2$ |  |

## Study Guide Problem \& Solution

Fill in the blank to complete the two-column proof.
Given: $\angle 1$ and $\angle 2$ are complementary. $m \angle 1=42^{\circ}$
Prove: $m \angle 2=48^{\circ}$


Proof:

| Statements | Reasons |
| :--- | :--- |
| $1 . \angle 1$ and $\angle 2$ are complementary. | 1. Given |
| $2 . m \angle 2=42^{\circ}$ | 2. Given |
| $3 . m \angle 1+m \angle 2=90^{\circ}$ | 3. [?] THEY'RE COMPLEMENTARY, SO WE KNOW THE ANGLES <br> ADD TO 90 |
| $4.42^{\circ}+m \angle 2=90^{\circ}$ | 4. Substitution Property |
| $5 . m \angle 2=48^{\circ}$ | 5. Subtraction Property of Equality. |

## New Example

| 47 | Fill in the blank to complete the two-column proof. <br> Given: $\angle 1$ and $\angle 2$ are a linear pair. $m \angle 2=57^{\circ}$ <br> Prove: $m \angle 1=127^{\circ}$ <br> Proof: |  |
| :---: | :---: | :---: |
|  | Statements | Reasons |
|  | 1. $\angle 1$ and $\angle 2$ are a linear pair. | 1. Given |
|  | 2. $m \angle 2=57^{\circ}$ | 2. Given |
|  | 3. $m \angle 1+m \angle 2=180^{\circ}$ | 3. Linear Pair Theorem |
|  | 4. $m \angle 1+57^{\circ}=90^{\circ}$ | 4. [?] |
|  | 5. $m \angle 1=127^{\circ}$ | 5. Subtraction Property of Equality. |

## Study Guide Problem \& Solution

a) Explain and draw an example of the Perpendicular Transversal Theorem

b) If 2 intersecting lines form a linear pair of congruent angles, then how many degrees must those two angles be?


$$
\begin{gathered}
\text { A LINEAR PAIR ADDS TO EQUAL } 180^{\circ} . \\
m \angle 1+m \angle 2=180^{\circ} \\
m \angle 1=m \angle 2 \text { (SUBSTITUTE) } \\
m \angle 2+m \angle 2=180^{\circ} \\
2(m \angle 2)=180^{\circ} \\
m \angle 2=90^{\circ}
\end{gathered}
$$

So, that means the two angles are $90^{\circ}$. The lines are perpendicular. The property name is: 2 INTERSECTING LINES FORM LIN. PAIR OF $\cong \angle S \rightarrow$ LINES $\perp$



| Study Guide Problem \& Solution |  |
| :--- | :--- |
| Complete the following proof. <br> Given: $m \angle 2+m \angle 3+m \angle 4=180^{\circ}$ <br> Prove: $m \angle 1=m \angle 3+m \angle 4$ <br> Proof: <br> Statements  <br> 1. $m \angle 2+m \angle 3+m \angle 4=180^{\circ}$ 1. Given <br> 2. $m \angle 3+m \angle 4=180^{\circ}-m \angle 2$ 2. Subtraction Property of Equality <br> 3. $m \angle 1+m \angle 2=180^{\circ}$ 3. [?] $\angle 1$ \& $\angle 2$ ARE A LINEAR PAIR, SO, LINEAR PAIR THEOREM. <br> $4 . m \angle 1=180^{\circ}-m \angle 2$ 4. Subtraction Property of Equality <br> $5 . m \angle 1=m \angle 3+m \angle 4$ 5. Substitution |  |


| New Example |  |  |
| :---: | :---: | :---: |
| 50 | Complete the following proof. <br> Given: $\angle 2$ and $\angle 4$ are vertical angles. <br> Prove: $m \angle 2=m \angle 4$ <br> Proof: |  |
|  | Statements | Reason |
|  | 1. $\angle 2$ and $\angle 4$ are vertical angles. | 1. Given |
|  | 2. $\angle 2 \cong \angle 4$ | 2. Definition of Vertical Angles |
|  | 3. $m \angle 2=m \angle 4$ | 3. [?] |

