Name: __ Geometry: 1st Semester Benchmark Exam Example Sheet 4

		I	
Study Guide Problem & S			New Example
The lengths of two sides of a triangle are 5 inches and 11 inches. Find the range of possible lengths for the third side, s. THE THIRD SIDE MUST BE LONG ENOUGH TO CONNECT THE OTHER TWO (BIGGER THAN THE SPACE BETWEEN THEM—SUBTRACT) AND SHORT ENOUGH THAT THE OTHER TWO CAN BOTH CONNECT TO IT (SMALLER THAN THE TOTAL DISTANCE OF THE OTHERS—ADD). So Subtraction < 3 rd side < Addition $11-5 < s < 11+5$ 6 < s < 16		41	The lengths of two sides of a triangle are 3 inches and 12 inches. Find the range of possible lengths for the third side, <i>s</i> .
The diagonal of a square is 8 inches. How lo		42	The diagonal of a square is 12 inches. How long is one
Use the Pythagorean th	0		side?
Use the Pythagorean theorem. $x^{2} + x^{2} = 8^{2}$ $x^{2} = 32$ $x = \sqrt{32} = \sqrt{16}\sqrt{2} = 4\sqrt{2}$			
The sum of the exterior angles of a polygon		43	The sum of the exterior angles of a polygon is half of the
the interior angles. What type of polygon is	it?		sum of the interior angles. What type of polygon is it?
a) Triangle – 3 sides	-		
	The formula for the		
, 8	SUM OF THE INTERIOR		
-	ANGLES IS $(n-2)(180)$.		
	n = number of sides.		
	For this problem, the sum of the exterior angles $(360^{\circ}) = 2$ times the sum of the interior angles $(n-2)(180)$.		
SET UP THE EQUATION AND SOLVE FOR T	HE NUMBER OF SIDES.		
ext. \angle sum = 2(int. \angle sum)			
$360 = 2[(n-2)(180)] \leftarrow Plugged II$	N THE EXT. $oldsymbol{\mathcal{E}}$ INT. $oldsymbol{ar{s}}$ s		
$180 = (n - 2)(180) \leftarrow \text{Divided be}$	OTH SIDES BY 2		
1 = n - 2	oth sides by 180		
$3 = n$ \leftarrow Added 2 T	O BOTH SIDES		
The number of sides is 3! It's	a <u>TRIANGLE!</u>		
What makes a triangle <i>similar</i> ?		44	a. Δ LMN and Δ DEF are both acute.
TRIANGLES ARE SIMILAR WHEN THE CORRES			$m \angle D = m \angle L$. Are they similar?
congruent and the corresponding sides are proportional (fractions are equal). To <u>prove</u> they're similar, you need to have SSS (all 3 sides), SAS (2 sides and the angle between), or AA (2 angles).			b. Δ LMN and Δ DEF are both obtuse. m \angle D=m \angle L. Are they similar?
Are all obtuse triangles <i>similar</i> ?			
No. All angles between 90° & 180° are "obtuse." You			
NEED <u>TWO</u> CONGRUENT ANGLES TO PROVE SIMILARITY.			c. ΔLMN and ΔDEF are both isosceles. $m \angle D = m \angle F, m \angle L = m \angle M \& m \angle D = m \angle L$. Are
"OBTUSE" REFERS TO ONE ANGLE, AND DOESN'T TELL ITS SIZE.			
Are all acute triangles <i>similar</i> ? No. All ANGLES BETWEEN O° & 90° ARE "ACUTE." YOU NEED			they similar?
NO. ALL ANGLES BETWEEN O 6 90 ARE "ACUTE." YOU NEED <u>TWO</u> CONGRUENT ANGLES TO PROVE SIMILARITY. "ACUTE"			
REFERS TO ONLY ONE ANGLE, AND DOESN'T			
Are all isosceles triangles <i>similar</i> ?			
No. Isosceles means that ONE triangle	LE HAS TWO CONGRUENT		

		Geometry Example Sheet 4, Page 2
ANGLES. THAT SET OF CONGRUENT ANGLES MAY NOT BE THE SAME AS THE CONGRUENT ANGLES ON THE OTHER TRIANGLE. HOWEVER, IF THE VERTEX ANGLE (ON BOTH TRIANGLES) MATCHES, THEN THE ISOSCELES TRIANGLES MUST BE SIMILAR.		
Find the length of the line segment with endpoints (-2, 5) and (1, 11). Write your answer in the simplest radical form. $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $d = \sqrt{(1 - (-2))^2 + (11 - 5)^2} = \sqrt{(3)^2 + (6)^2} = \sqrt{9 + 36} = \sqrt{45} = \sqrt{9}\sqrt{5}$ $d = 3\sqrt{5}$	45	Find the length of the line segment with endpoints (-2, 8) and (4, 12). Write your answer in the simplest radical form.
A sewing club is making a quilt consisting of 25 squares with each side of the square measuring 30 centimeters. If the quilt has 5 rows and 5 columns, what is the perimeter of the quilt? THE QUILT WOULD HAVE 5 ROWS & 5 COLUMNS LIKE THE PICTURE TO THE RIGHT. THE SIDE OF EACH SQUARE IS 30, SO EACH SIDE OF THE QUILT IS: (30)(5)=150 cm PERIMETER IS THE SUM OF THE SIDES, SO: P = 150 + 150 + 150 + 150 = 600 cm	46	A sewing club is making a quilt consisting of 16 squares with each side of the square measuring 20 centimeters. If the quilt has 4 rows and 4 columns, what is the perimeter of the quilt?

	The Properties You Need to Know for the Final		
Angle Addition Postulate	Definition of Supplementary Angles	Reflexive Property of Equality	
m∠ABC+m∠CBD=m∠ABD	m∠A + m∠B = 180°	4 = 4 or 2x = 2x or AB = AB	
Corresponding Angles Postulate	Linear Pair Theorem	Subtraction Property of Equality	
$\frac{1}{2} \angle 1 \cong \angle 2$	<u>1/2</u> <i>m∠1 + m∠2 = 180°</i>	IF 2x + 4 = 6, THEN 2x = 2 (SUBTRACTED 4 FROM BOTH SIDES)	
Definition of Complementary Angles	Perpendicular Transversal Theorem	Transitive Property of Equality	
m∠G + m∠H = 90°	IF A TRANSVERSAL IS PERPENDICULAR TO ONE PARALLEL LINE, THEN IT IS PERPENDICULAR TO THE OTHER LINE.	IF AB = BC and BC = CD, THEN AB = CD	
Definition of Congruence	Segment Addition Postulate	Vertical Angles Theorem	
$\frac{PQ}{PQ} = \frac{RS}{RS} OR \frac{PQ}{PQ} = \frac{RS}{RS}$ $PQ = RS$	XY + YZ = XZ	$\frac{1/4}{2/3} \ \angle 1 \cong \angle 3 \text{ or } \angle 2 \cong \angle 4$	
	Substitution Property of Equality		
	IF x = 4, THEN		
	5x - 2 = 5(4) - 2		

Study Guide Problem & Solution			
Fill in the blank to complete the two-column proof.			
Given: $\angle 1$ and $\angle 2$ are complementary. $m \angle 1 = 42^{\circ}$			
Prove : $m \angle 2 = 48^{\circ}$	-		
Proof:			
Statements	Reasons		
1. $\angle 1$ and $\angle 2$ are complementary.	1. Given		
$2. m \angle 2 = 42^{\circ}$	2. Given		
3. $m \angle 1 + m \angle 2 = 90^{\circ}$	3. [?] THEY'RE COMPLEMENTARY, SO WE KNOW THE ANGLES		
	add to 90°. So, <u>Definition of Complementary angles.</u>		
4. $42^{\circ} + m\angle 2 = 90^{\circ}$	4. Substitution Property		
$5. m \angle 2 = 48^{\circ}$	5. Subtraction Property of Equality.		
New Ex	ample		
47 Fill in the blank to complete the two-column proof.			
Given: $\angle 1$ and $\angle 2$ are a linear pair. $m \angle 2 = 57^{\circ}$ $1/2$			
Prove: $m \angle 1 = 127^{\circ}$			
Proof:			
Statements	Reasons		
1. $\angle 1$ and $\angle 2$ are a linear pair.	1. Given		
$2.m\angle 2 = 57^{\circ}$	2. Given		
3. <i>m</i> ∠1+ <i>m</i> ∠2=180°	3. Linear Pair Theorem		
4. $m \angle 1 + 57^{\circ} = 90^{\circ}$	4. [?]		
5. <i>m</i> ∠1 =127°	5. Subtraction Property of Equality.		

New Example			
48	Fill in the blank to complete the two-column proof with the provided answer choices.		
		Answer choices: –Perpendicular Transversal theorem or – 2 intersecting lines form lin. pair of $\cong \angle s \rightarrow lines \bot$	
	Statements	Reasons	
	1. $\angle 1$ and $\angle 2$ are a linear pair	1. Given	
	2. $\angle 1 \cong \angle 2$	2. Given	
	3. line $p \perp$ line m	3. [?]	
	4. line <i>m</i> line <i>n</i>	4. [?]	
	5. $m \angle 3 = 90^{\circ}$	5. Definition of Perpendicular	

Study Guide Problem & Solution			
Complete the proof by supplying the miss Given that $m \angle CBE = m \angle FBD$, prove $m \angle CBE$			
$m \angle CBE = m \angle FBD$	Given information		
$m \angle CBE = m \angle CBD + m \angle EBD$	Angle Addition Postulate		
$m \angle FBD = m \angle FBE + m \angle EBD$	[?] Two angles added up to equal a third angle. So,		
	Angle Addition Postulate.		
$m \angle CBD + m \angle EBD = m \angle FBE + m \angle EBD$	D Substitution Property of Equality		
$m \angle CBD = m \angle FBE$	Subtraction Property of Equality.		
New Example			
49 Complete the proof by supplying the missing reason.			
Given that $AB = 4$, and $BC = 7$, pro-	AC = 11.		
AB = 4, and $BC = 7$	Given information		
AB + BC = AC	[?]		
4 + 7 = AC	Substitution Property of Equality		
11 = AC	Simplify		
AC = 11	Symmetric Property of Equality		

Study Guide Problem & Solution			
Complete the following proof. Given: $m \angle 2 + m \angle 3 + m \angle 4 = 180^{\circ}$ Prove: $m \angle 1 = m \angle 3 + m \angle 4$ Proof:			
Statements	Reasons		
$1. m \angle 2 + m \angle 3 + m \angle 4 = 180^{\circ}$	1. Given		
$2. m \angle 3 + m \angle 4 = 180^\circ - m \angle 2$	2. Subtraction Property of Equality		
$3. m \angle 1 + m \angle 2 = 180^{\circ}$	3. [?] $\angle 1 \& \angle 2$ are a linear pair, so, <u>linear pair theorem</u> .		
$4. m \angle 1 = 180^\circ - m \angle 2$	4. Subtraction Property of Equality		
$5. m \angle 1 = m \angle 3 + m \angle 4$	5. Substitution		

	New Example			
50	50 Complete the following proof.			
	Given: $\angle 2$ and $\angle 4$ are vertical angles.	1/4		
	Prove: $m \angle 2 = m \angle 4$	2/3		
Proof:				
	Statements		Reasons	
	1. $\angle 2$ and $\angle 4$ are vertical angles.		1. Given	
	2. ∠2 ≅∠4		2. Definition of Vertical Angles	
	3. $m \angle 2 = m \angle 4$		3. [?]	