Name:	Per:

Justifying Work Part 1

You know how to solve these kinds of problems. Now, I expect you to explain <u>how you solve them</u>. Moreover, I expect you to follow the steps that I give you to solve the problem *exactly* as I tell you to solve it.

On the left side of the page, I have solved a problem from the content you have already learned. Your work is to fill in the blanks explaining how I got to each step (never explain ahead of the step you're on).

On the right side of the page, I have explained how to solve a problem from the content you have already learned. Your work is to fill in the blanks **doing the math to solve the problem**, **the way I have described it**.

Segment and Angle Addition Problems

Remember the rule:

part1 + part2 = whole

EXAMPLE: Explaining the Math

Each Step of Math	What I did/knew to get to that step of Math
1. $AB = 3x, BC = 2x,$ & $AC = 6x - 4$	1. Copied the measures from the problem
$2. \ AB + BC = AC$	2. It's segment addition. part1 + part2 = whole
$3. \ 3x + 2x = 6x - 4$	3. Plugged in the measures
$4. \ 5x = 6x - 4$	4. Combined like terms on one side
5x = -4	5. Subtracted 6x from both sides
6. $x = 4$	6. Divided both sides by -1
$7. \ AC = 6(4) - 4$	7. Plugged in x = 4 to AC
8. <i>AC</i> = 20	8. Solved that side of =

EXAMPLE: Following instructions to write the Math

Each Step of Math	What I did/knew to get to that step of Math
1. $\underline{m} \angle DEF = (8x + 10)^{\circ}$, $\underline{m} \angle FEG = (2x + 4)^{\circ}$, $\underline{\&} \ \underline{m} \angle DEG = (12x - 6)^{\circ}$.	1. Copied the measures from the problem
2. $m \angle DEF + m \angle FEG = m \angle DEG$	2. It's angle addition. part1 + part2 = whole
3. $8x + 10 + 2x + 4 = 12x - 6$	3. Plugged in the measures
$4. \ 10x + 14 = 12x - 6$	4. Combined like terms on one side
5. $14 = 2x - 6$	5. Subtracted 10x from both sides
6. $20 = 2x$	6. Added 6 to both sides
7. $10 = x$	7. Divided both sides by 2
8. <u>x = 10</u>	8. Switched 10 and x, so x would be on the left of =
9. $m \angle FEG = 2(10) + 4$	9. Plugged in x = 10 to <i>m</i> ∠ <i>FEG</i> .
10. <i>m</i>∠<i>FEG</i> = 24°	10. Solved that side of =

Midpoint and Bisector Problems

Remember the rules:

 $part1 \cong part2$

2(part) = whole

Problem #1: Explaining the Math

Each Step of Math	What I did/knew to get to that step of Math
1. \overrightarrow{MP} bisects $\angle LMN$, $m\angle LMP = (5x + 4)^{\circ}$, $\& m\angle PMN = (8x - 14)^{\circ}$	1.
2. ∠ <i>LMN</i> ≅ ∠ <i>PMN</i>	2.
3. $m \angle LMN = m \angle PMN$	3.
$4. \ 5x + 4 = 8x - 14$	4.
5. $4 = 3x - 14$	5.
6. $18 = 3x$	6.
7. 6 = <i>x</i>	7.
8. <i>x</i> = 6	8.
9. $m \angle PMN = 8(6) - 14$	9.
10. <i>m∠PMN</i> = 34°	10.

Each Step of Math	What I did/knew to get to that step of Math
1.	Copied <u>all of</u> the information from the problem (midpoint and measures)
2.	2. Midpoint means part1 ≅ part2 (ABC order)
3.	3. Congruent segments are equal segments
4.	4. Plugged in $HJ = 3x + 1$ and $JK = 5x - 3$
5.	5. Subtracted 3 <i>x</i> from both sides
6.	6. Added 3 to both sides
7.	7. Divided both sides by 2
8.	8. Switched the sides of the =, so x would be on the left
9.	9. Plugged x = 2 into HJ
10.	10. Solved that side to get H

	Name:	Per:
Justifying Work Part 1		

Vertical Angle Problems

Remember the rule:

Vertical Angle $1 \cong Vertical Angle 2$

Problem #3: Explaining the Math

 $\angle 1 \& \angle 3$ are vertical angles $m \angle 1 = (4x + 16)^{\circ}$ $m \angle 3 = ?$ $\& m \angle 3 = (5x - 14)^{\circ}$

Hint: The problem won't usually give you a picture of the angles AND tell you they're vertical. You should automatically identify it from the picture and write it in.

What I did/knew to get to that step of Math
1.
2.
3.
4.
5.
6.
7.
8.
9.

Problem #4: Following instructions to write the Math

∠6 & ∠8 are vertical angles m∠6 = $(7x + 22)^{\circ}$ m∠6 = ? & m∠8 = $(12x + 17)^{\circ}$

Hint: The problem won't usually give you a picture of the angles AND tell you they're vertical. You should automatically identify it from the picture and write it in.

Each Step of Math	What I did/knew to get to that step of Math
1.	Copied <u>all of</u> the information from the problem (angle type and measures)
2.	2. Vertical angles are ≅ (numerical order)
3.	3. Congruent angles are equal angles
4.	4. Plugged in <i>m</i> ∠6 & <i>m</i> ∠8
5.	5. Subtracted 7 <i>x</i> from both sides
6.	6. Subtracted 17 from both sides
7.	7. Divided both sides by 5
8.	8. Switched the sides of the = to get <i>x</i> on the left
9.	9. Plugged x = 1 into <i>m</i> ∠6
10.	10. Solved that side to get what <i>m</i> ∠6 equals

Linear Pair Problems

Remember the rule:

Linear angle1 + Linear angle2 = 180°

Problem #5: Explaining the Math

 $\angle 10 \& \angle 11$ are a linear pair $m\angle 10 = (8x + 24)^{\circ}$ $m\angle 11 = ?$ $\& m\angle 11 = (x + 3)^{\circ}$

Hint: The problem won't usually give you a picture of the angles AND tell you they're linear. You should automatically identify it from the picture and write it in.

Each Step of Math	ı	What I did/knew to get to that step of Math
1. $\angle 10 \& \angle 11$ are a pair, $m \angle 10 = (8x \& m \angle 11 = (x + 3))$	+ 24)°	1.
2. <i>m</i> ∠10 + <i>m</i> ∠11	= 180	2.
3. $8x + 24 + x + 3$	3 = 180	3.
$4. \ 9x + 27 = 180$		4.
5. $9x = 153$		5.
6. $x = 17$		6.
$7. m \angle 11 = 17 + 3$		7.
8. <i>m</i> ∠11 = 20°		8.

Problem #6: Following instructions to write the Math

 $\angle 13 \& \angle 14$ are a linear pair $m\angle 13 = (4x - 14)^{\circ} \quad m\angle 14 = ?$ $\& m\angle 14 = (15x + 4)^{\circ}$

Hint: The problem won't usually give you a picture of the angles AND tell you they're linear. You should automatically identify it from the picture and write it in.

Each Step of Math	What I did/knew to get to that step of Math
1.	1. Copied <u>all of</u> the information from the problem (angle type and measures)
2.	2. Linear pairs add to = 180, so I added the $m\angle$'s.
3.	3. Plugged in <i>m</i> ∠13 & <i>m</i> ∠14
4.	4. Combined like terms
5.	5. Added 10 to both sides
6.	6. Divided both sides by 19
7.	7. Plugged $x = 10$ into $m \angle 14$
8.	8. Solved that side to get what <i>m</i> ∠14 equals