\qquad Per: \qquad
Translating Explanations into Reasons
So far, we've been explaining our steps using colloquial, or casual, language. Now, however, we must begin to explain the math like mathematicians. This simply means that instead of writing a sentence explaining each step, you'll explain each step of math using technical math terms. The process of explaining remains the same. The difference is simply that you must not speak English any longer. You must learn to speak Math. Today, we'll translate our casual English explanations into technical Math vocabulary.

Explanations we're used to...	Technical Math Term for that Explanation
Each Step of Math	Statements
What I did/knew to get to that step of Math	Reasons

> The problem told me
> It says so on the picture
> Copied the angle measures from the problem

Given

Added $6 x$ to both sides Added 4 to both sides Added $M N$ to both sides	Addition Property of Equality
Subtracted $2 x$ from both sides Subtracted 9 from both sides Subtracted $m \angle 2$ from both sides	Subtraction Property of Equality
Multiplied both sides by 9 Multiplied both sides by A	Multiplication Property of Equality
Divided both sides by 5 Divided both sides by h	Division Property of Equality

Multiplied the numbers on one side Combined like terms on the left Solved one side to get what $m \angle 2$ equals	Simplify
Distribute the 2 to everything inside the ()	Distributive Property

Congruent angles are equal angles
Equal segments are congruent segments If they're congruent, then their sizes are equal Congruent means they're equal

Definition of Congruence

It's segment addition. part1 + part2 $=$ whole If you add the two parts of the segment, you'll get all of it	Segment Addition Postulate		
It's angle addition. part1 + part2 = whole	Angle Addition Postulate		
If you add the two angle parts, you'll get the whole thing		\quad	
:---:			

\(\left.\begin{array}{|c|c|}\hline Midpoint means part1 \cong part2

If it's a midpoint, then the parts are the same

Midpoint means 2(part) = whole

Midpoint means that the whole thing is twice as big as

one part\end{array}\right]\)| Definition of a Midpoint |
| :---: |
| Bisect means part1 \cong part2 |
| If it's a Bisector, then the parts are the same |
| Bisect means 2(part) $=$ whole |
| Bisect means that the whole is twice as big as one part |

Vertical angles are congruent Vertical angles are the same They're across an X from each other, so they're the same	Vertical Angles Theorem
Linear pairs add to $=180$, so I added $m \angle+m \angle=180^{\circ}$	
They're a linear pair, so they add to equal 180°	
Linear Pair Angles are supplementary	
Linear Angle1 + Linear Angle2 $=180^{\circ}$	Linear Pair Theorem

They're complementary. comp1 $+\operatorname{comp} 2=90^{\circ}$ Complementary means they add to equal 90°	Definition of Complementary Angles
They're supplementary. supp1 $+\operatorname{supp} 2=90^{\circ}$ Supplementary means they add to equal 180°	Definition of Supplementary Angles

Plugged x into the equation Plugged in $A B=3 x \& B C=9 x+1$ Replaced x with what it equals Replaced $m \angle 2$ with $m \angle 3$ because they're equal Replaced $R S$ with $S T$ because they're equal	Substitution Property of Equality
Replaced $\overline{R S}$ with $\overline{S T}$ because they're congruent Replaced $\angle 2$ with $\angle 3$ because they're the same	Substitution Property of Congruence
Switched the sides of the $=$ to get x on the left Switched one side of the equal sign with the other	Symmetric Property of Equality
Switched the sides of the \cong to get $\overline{H I}$ on the left Switched one side of the congruent side with the other	Symmetric Property of Congruence
They're the same number. 7 is 7	
$A B$ equals itself $(A B=A B)$	Reflexive Property of Equality
They're the same figure. $\overline{G H}$ is $\overline{G H}$	Reflexive Property of Congruence
$\angle L M N$ is congruent to itself $(\angle L M N \cong \angle L M N)$	Transitive Property of Equality
I skipped the middle. $x=y, y=z \ldots$ so x is just z	Transitive Property of Congruence
I skipped the middle. $\angle 4 \cong \angle 9, \angle 9 \cong \angle 11 \ldots$ so $\angle 4$ is $\angle 11$	

\qquad Per: \qquad
Use the Translation Guide on the previous page to match the Explanations on the left with the correct Reasons on the right. Draw a line connecting the matching items.

Combined the like terms on the right side

Supplementary Angles add to equal 180°
For connected angles, part1 + part2 = whole
Plugged in $H T$ for $A R$, since they're equal
Subtracted 3 from both sides

If it's a midpoint, then part1 \cong part2

Divided both sides by $K L$
If they're vertical, then they're congruent It was just part of the problem written at the top
$m \angle 3$ is equal to $m \angle 3$. The angle is itself.

Multiplied 7 to everything in the parentheses
Switched the sides of the equal sign
Skipped the middle. $\overline{P Q} \cong \overline{A B}, \overline{A B} \cong \overline{L M}$.

$$
\text { So, } \overline{P Q} \text { is } \overline{L M}
$$

Since $m=n \& n=p, m=p$
Equal angles are congruent angles

Complementary1 + Complementary2 = 90° $\overline{L M}$ is $\overline{L M}$

If you add the two parts of the segment, you get the whole

Replaced $\angle 8$ with $\angle 1$ because they're the same
Added $17 x$ to both sides of the equation

Multiplied 7 to both sides of the equation
Bisect means that 2 (part) $=$ whole
Switched what was on the left of \cong with what was on the right

Linear Pair Angles add to equal 180°

- ${ }^{\text {? Angle Addition Postulate }}$
- ? Subtraction Property of Equality
- ?Substitution Property of Equality
- ${ }^{\text {? Vertical Angles Theorem }}$
- ? ${ }^{\text {Given }}$
- Reflexive Property of Congruence
- ? Segment Addition Postulate
- -Simplify
- DDefinition of Supplementary Angles
- ? Definition of a Bisector
- ?Transitive Property of Equality
- ? Addition Property of Equality
- -Substitution Property of Congruence
- - Definition of Congruence
- ?Reflexive Property of Equality
- [3ymmetric Property of Congruence
- 回Multiplication Property of Equality
- ? Linear Pair Theorem
- Transitive property of Congruence
- ?Division Property of Equality
- ? Definition of Complementary Angles
- ? Definition of a Midpoint
- - Symmetric Property of Equality
- ?Distributive Property

For each Reason, write what the term means as you would explain it normally. Use your own words-don't just copy what we used earlier.

Reason	What it means in casual language
Given	
Addition Property of Equality	
Subtraction Property of Equality	
Multiplication Property of Equality	
Division Property of Equality	
Simplify	
Distributive Property	
Definition of Congruence	
Segment Addition Postulate	
Angle Addition Postulate	
Definition of a Midpoint	
Definition of a Bisector	
Vertical Angles Theorem	
Linear Pair Theorem	
Definition of Complementary Angles	
Definition of Supplementary Angles	
Substitution Property of Equality	
Substitution Property of Congruence	
Symmetric Property of Equality	
Symmetric Property of Congruence	
Reflexive Property of Equality	
Reflexive Property of Congruence	
Transitive Property of Equality	
Transitive Property of Congruence	

