Translating Explanations into Reasons

So far, we've been explaining our steps using colloquial, or casual, language. Now, however, we must begin to explain the math like mathematicians. This simply means that instead of writing a sentence explaining each step, you'll explain each step of math using technical math terms. The process of explaining remains the same. The difference is simply that you must not speak English any longer. You must learn to speak Math. Today, we'll translate our casual English explanations into technical Math vocabulary.

Explanations we're used to	Technical Math Term for that Explanation	
Each Step of Math	Statements	
What I did/knew to get to that step of Math	Reasons	
The problem told me		
It says so on the picture	Given	
Copied the angle measures from the problem		
Added 6 <i>x</i> to both sides		
Added 4 to both sides	Addition Property of Equality	
Added <i>MN</i> to both sides		
Subtracted 2 <i>x</i> from both sides		
Subtracted 9 from both sides	Subtraction Property of Equality	
Subtracted $m \angle 2$ from both sides		
Multiplied both sides by 9	Multiplication Property of Equality	
Multiplied both sides by <i>A</i>	Multiplication Property of Equality	
Divided both sides by 5	Division Property of Equality	
Divided both sides by <i>h</i>		
Multiplied the numbers on one side		
Combined like terms on the left	Simplify	
Solved one side to get what $m/2$ equals	Simpiliy	
Distribute the 2 to eventthing inside the ()	Distributive Droporty	
Distribute the 2 to everything histor the ()	Distributive Property	
Congruent angles are equal angles		
Equal segments are congruent segments		
If they're congruent, then their sizes are equal	Definition of Congruence	
Congruent means they're equal		
It's segment addition. part1 + part2 = whole		
If you add the two parts of the segment, you'll get all of it	Segment Addition Postulate	
It's angle addition. part1 + part2 = whole		
If you add the two angle parts, you'll get the whole thing	Angle Addition Postulate	

Finapolite incuits pareir = pareir	
If it's a midpoint, then the parts are the same	
Midpoint means 2(part) = whole Definition of	of a Midpoint
Midpoint means that the whole thing is twice as big as one part	
Bisect means part $1 \cong part 2$	
If it's a Bisector, then the parts are the same	of a Rispetor
Bisect means 2(part) = whole	Demittion of a Disector
Bisect means that the whole is twice as big as one part	

Vertical angles are congruent Vertical angles are the same They're across an X from each other, so they're the same	Vertical Angles Theorem
Linear pairs add to = 180, so I added $m \angle + m \angle = 180^{\circ}$ They're a linear pair, so they add to equal 180°	Linear Pair Theorem
Linear Pair Angles are supplementary Linear Angle1 + Linear Angle2 = 180°	

They're complementary. comp1 + comp2 = 90° Complementary means they add to equal 90°	Definition of Complementary Angles
They're supplementary. supp1 + supp2 = 90° Supplementary means they add to equal 180°	Definition of Supplementary Angles

Plugged x into the equation Plugged in $AB = 3x \& BC = 9x + 1$ Replaced x with what it equals Replaced $m \angle 2$ with $m \angle 3$ because they're equal Replaced <i>RS</i> with <i>ST</i> because they're equal	Substitution Property of Equality
Replaced \overline{RS} with \overline{ST} because they're congruent Replaced $\angle 2$ with $\angle 3$ because they're the same	Substitution Property of Congruence
Switched the sides of the = to get <i>x</i> on the left Switched one side of the equal sign with the other	Symmetric Property of Equality
Switched the sides of the \cong to get \overline{HI} on the left Switched one side of the congruent side with the other	Symmetric Property of Congruence
They're the same number. 7 is 7 <i>AB</i> equals itself (<i>AB</i> = <i>AB</i>)	Reflexive Property of Equality
They're the same figure. \overline{GH} is \overline{GH} $\angle LMN$ is congruent to itself ($\angle LMN \cong \angle LMN$)	Reflexive Property of Congruence
I skipped the middle. $x = y, y = z$ so x is just z	Transitive Property of Equality
I skipped the middle. $\angle 4 \cong \angle 9, \angle 9 \cong \angle 11$ so $\angle 4$ is $\angle 11$	Transitive Property of Congruence
	•

Use the Translation Guide on the previous page to match the **Explanations** on the left with the correct **Reasons** on the right. Draw a line connecting the matching items.

- Combined the like terms on the right side •
- Supplementary Angles add to equal 180° •
- For connected angles, part1 + part2 = whole
 - Plugged in *HT* for *AR*, since they're equal
 - Subtracted 3 from both sides •
 - If it's a midpoint, then part $1 \cong part 2$
 - Divided both sides by *KL* •
 - If they're vertical, then they're congruent •
- It was just part of the problem written at the top
 - $m \angle 3$ is equal to $m \angle 3$. The angle is itself. •
 - Multiplied 7 to everything in the parentheses
 - Switched the sides of the equal sign
 - Skipped the middle. $\overline{PQ} \cong \overline{AB}, \overline{AB} \cong \overline{LM}$. So, \overline{PQ} is \overline{LM}
 - Since m = n & n = p, m = p •
 - Equal angles are congruent angles
 - Complementary1 + Complementary2 = 90°
 - \overline{LM} is \overline{LM} •
 - If you add the two parts of the segment, you get the whole
 - Replaced $\angle 8$ with $\angle 1$ because they're the same
 - Added 17*x* to both sides of the equation •
 - Multiplied 7 to both sides of the equation
 - Bisect means that 2(part) = whole
 - Switched what was on the left of \cong with what was on the right
 - Linear Pair Angles add to equal 180° •

- Angle Addition Postulate
- Subtraction Property of Equality

Per:

- Substitution Property of Equality
- **2Vertical Angles Theorem**
- 🛛 Given
- Reflexive Property of Congruence
- Segment Addition Postulate
- Simplify
- Definition of Supplementary Angles
- Definition of a Bisector
- Transitive Property of Equality
- Addition Property of Equality
- Substitution Property of Congruence
- Definition of Congruence
- Reflexive Property of Equality
- Symmetric Property of Congruence
- Multiplication Property of Equality
- ZLinear Pair Theorem
- Transitive property of Congruence
- Division Property of Equality
- Definition of Complementary Angles
- Definition of a Midpoint
- Symmetric Property of Equality
- Distributive Property

For each **Reason**, write what the term means as *you would explain it normally*. Use your own words—don't just copy what we used earlier.

Reason	What it means in casual language
Given	
Addition Property of Equality	
Subtraction Property of Equality	
Multiplication Property of Equality	
Division Property of Equality	
Simplify	
Distributive Property	
Definition of Congruence	
Segment Addition Postulate	
Angle Addition Postulate	
Definition of a Midpoint	
Definition of a Bisector	
Vertical Angles Theorem	
Linear Pair Theorem	
Definition of Complementary Angles	
Definition of Supplementary Angles	
Substitution Property of Equality	
Substitution Property of Congruence	
Symmetric Property of Equality	
Symmetric Property of Congruence	
Reflexive Property of Equality	
Reflexive Property of Congruence	
Transitive Property of Equality	
Transitive Property of Congruence	

Name: ______ Per: _____