\qquad Per: \qquad

Geometry

$1^{\text {st }}$ Semester Benchmark Exam Study Guide

1	In the diagram below, $\mathrm{HS}=700$ miles, $\mathrm{DS}=300$ miles and P is the midpoint of $\overline{H D}$. Find PD .		
2	Find the measure of $\angle \mathrm{LON}$. Then classify the angle as acute, right, or obtuse.		
3	$m \angle A B C=62^{\circ}$ and $m \angle C B D=36^{\circ}$. Find $m \angle A B D$.	9	Show that the conjecture is false by finding a counterexample. If $x<y$, then $x+y>y-x$ a) $x=2, y=5$ b) $x=5, y=2$ c) $x=-2, y=5$ d) $x=5, y=-2$
4	Identify the hypothesis and conclusion of the conditional statement. If I am hungry, then I eat	10	Write a conditional statement from the statement. A bird as wings.
5	Write the converse, inverse, and contrapositive of the conditional statement. If James is bilingual, then he can speak two languages.	11	Write the converse, inverse, and contrapositive of the conditional statement. If a triangle is equilateral, then it has 3 congruent sides.
6	Write the definition as a biconditional. A polygon is a decagon that has ten sides.	12	In order to prove that a quadrilateral is a parallelogram, one pair of opposite sides must be both \qquad and \qquad _.
7	If $\triangle D E F$ and $\triangle L M N$ are two triangles such that $\frac{D E}{L M}=\frac{E F}{M N}$, which angles have to be congruent in order to prove the triangles are similar?	13	In parallelogram PQRS, diagonals $\overline{P R}$ and $\overline{S Q}$ are drawn and intersect at point M. Which triangles, if any, MUST be congruent? Which triangles, if any, MUST be obtuse? Which triangles, if any, MUST be acute?
8	Which of the following triangle sets are similar, and how do you know? $\triangle A D B$ and $\triangle E D C \quad$ OR $\quad \Delta F H J$ and $\triangle G H I$	14	In parallelogram $K L M N, K N=14, N X=5$, and $\mathrm{m} \angle \mathrm{NKL}=107.2^{\circ}$. Find $N L$.

Name: \qquad Per: \qquad

| If $\triangle \mathrm{PQR} \cong \triangle \mathrm{RNP}$, then $\angle \mathrm{PQR} \cong$? |
| :--- | :--- |
| 15 |

\qquad Per: \qquad

29	Classify $\triangle A B C$ by its angle measures, given $\mathrm{m} \angle A C B=55^{\circ}$, $\mathrm{m} \angle B C D=55^{\circ}$, and $\mathrm{m} \angle A B D=20^{\circ}$.

\qquad Per: \qquad

41	The lengths of two sides of a triangle are 5 inches and 11 inches. Find the range of possible lengths for the third side, s.	44	What makes a triangle similar? Are all obtuse triangles similar? Are all acute triangles similar? Are all isosceles triangles similar?
42	The diagonal of a square is 8 inches. How long is one side?	45	Find the length of the line segment with endpoints $(-2,5)$ and $(1,11)$. Write your answer in the simplest radical form.
43	The sum of the exterior angles of a polygon is two times the sum of the interior angles. What type of polygon is it? a) Triangle b) Quadrilateral c) Pentagon d) Hexagon e) Decagon	46	A sewing club is making a quilt consisting of 25 squares with each side of the square measuring 30 centimeters. If the quilt has 5 rows and 5 columns, what is the perimeter of the quilt?

	The Properties You Need to Know for the Final	
Angle Addition Postulate	Definition of Supplementary Angles	Reflexive Property of Equality
Corresponding Angles Postulate	Linear Pair Theorem	Subtraction Property of Equality
Definition of Complementary Angles	Perpendicular Transversal Theorem	Transitive Property of Equality
Definition of Congruence	Segment Addition Postulate	Vertical Angles Theorem
	Substitution Property of Equality	

47 Fill in the blank to complete the two-column proof.
Given: : $\angle 1$ and $: \angle 2$ are complementary. $m \angle 22^{\circ}=42^{\circ}$.

Prove: $m \angle 1=48^{\circ}$.
Proof:

Statements	Reasons
1. 217 and $[23$ are complementary.	1. Given
2. $m \angle 2=42^{\circ}$:	2. Given
3. $m \angle 1+m \angle 2=90^{\circ}$ ¢	3. [?]
4. $\left.42^{\circ}+\underline{\square} \underline{\square 2}\right)^{\circ}=90^{\circ}$	4. Substitution Property
5. $\mathrm{m} \angle \mathrm{L2}=48^{\circ} \mathrm{j}$	5. Subtraction Property of Equality.

48	a)	Explain and draw an example of the Perpendicular Transversal Theorem
b)	If 2 intersecting lines form a linear pair of congruent angles, then how many degrees must those two angles be?	

\qquad Per: \qquad

49 Complete the proof by supplying the missing reason.
Given that $m \angle C B E=m \angle F B D$, prove $m \angle C B D=m \angle F B E$.

$m \angle C B E=m \angle F B D$	Given information
$m \angle C B E=m \angle C B D+m \angle E B D$	Angle Addition Postulate
$m \angle F B D=m \angle F B E+m \angle E B D$	$[?]$
$m \angle C B D+m \angle E B D=m \angle F B E+m \angle E B D$	Substitution Property of Equality
$m \angle C B D=m \angle F B E$	Subtraction Property of Equality.

50 Complete the following proof.
Given: $m \angle 2+m \angle 3+m \angle 4=180^{\circ}$
Prove: $m \angle 1=m \angle 3+m \angle 4$
Complete the proof.
Proof:

Statements				Reasons
1. $m \angle 2+m \angle 3+m \angle 4=180^{\circ}$	1. Given			
$2 . m \angle 3+m \angle 4=180^{\circ}-m \angle 2$	2. Subtraction Property of Equality			
$3 . m \angle 1+m \angle 2=180^{\circ}$	3. [?]			
$4 . m \angle 1=180^{\circ}-m \angle 2$	4. Subtraction Property of Equality			
$5 . m \angle 1=m \angle 3+m \angle 4$	5. Substitution			

