Name: _____ Per: ____

Geometry

1st Semester Benchmark Exam Study Guide

			Name: Per:
15	If $\triangle PQR \cong \triangle RNP$, then $\angle PQR \cong ? \angle RNP \cong ?$	22	Given that $\triangle PQR \cong \triangle LMR$ and $m \angle M = 42^\circ$, find
	P Q		m∠PRQ. P
	N R		Q R 42° L
16	Given the lengths marked on the figure and that $\angle QUS$ and $\angle RUT$ are vertical angles, what postulate or theorem, <i>if any</i> , can be used to prove that $\triangle QSU \cong \triangle RTU$? (SSS, SAS, AAS, ASA, HL, or none)	23	Identify one pair of each of the following: a) Parallel Segments b) Perpendicular Segments c) Skew Segments L
17	S 4 in R Find m $\angle PQR$.	24	$\frac{P}{O} \xrightarrow{M}_{N} \frac{T}{N} = S$ Find m $\angle ABC$.
	$(4x - 20)^{\circ} \xrightarrow{P}$		$(2x + 37)^{\circ}$
			СВ
18	FGHI is a parallelogram. Find GH. 5x + 8 - 6 H 7x - 10	25	Identify the property that justifies each statement. a) $x = 3$. So $4x = 4(3)$ b) $GH = GH$ c) $\angle ABC \cong \angle DEF$ and $\angle DEF \cong \angle GHI$. So $\angle ABC \cong \angle GHI$ d) $17 = AB$, so $AB = 17$
19	Find the value of <i>x</i> . Express your answer in simplest radical form. $2 \xrightarrow{x}{4}$	26	Given isosceles trapezoid VWXY with $\overline{VY} \cong \overline{WX}$, VZ = 3.6, and $WY = 7.4$. Find ZX. V = V = V = V
20	Find the area of the figure.	27	ΔLMN is an isosceles triangle with vertex $\angle N$. $m \angle L = ?$
	x-7 8		
21	Find the circumference of the circle. Use 3.14 for π , and round your answer to the nearest tenth.	28	Given $\Delta DEF \sim \Delta GHI$, find the area of ΔGHI . $P = 16 \text{ft}$ $F = 12 \text{ft}^2$ $E = 15$ H

29	Classify $\triangle ABC$ by its angle measures, given m $\angle ACB = 55^\circ$,	35	Laura folded a triangular sheet of paper into the shape
	$m \angle BCD = 55^\circ$, and $m \angle ABD = 20^\circ$.		shown. Find m $\angle NLO$, given m $\angle LON = 50^{\circ}$,
	D		$m \angle ONP = 35^\circ$, and $m \angle NMP = 85^\circ$.
	20%		507 0
			N 35°
	55° 55°		85°
	$A D \qquad C$		M P
30	Find the values of x and y . Express your answers in simplest	36	What is $m \angle ABE$?
	radical form.		D larg
	Ν		A
	y y y x		
			35° 6
	δ		- E
31	The rectangular tiles on the floor are 5 in. wide and 6 in.	37	Find the measure of each exterior angle of a regular
	long. If there are 50 tiles on the floor, what is the area of the		octagon.
	quilt?		
32	Tell whether the figure is a polygon. If it is a polygon, name	38	What type of triangle is formed by the points
	it by the number of its sides.		A(3, 2), B(4, 1), and C(-5, 4)? (right, equilateral, isosceles,
	N		or scalene)?
33	Find the coordinates of the midpoint of \overline{DM} with endpoints	39	Identify the transformation from figure 1 to figure 2. For
	Find the coordinates of the midpoint of <i>PM</i> with endpoints $P(4, 6)$ and $M(9, -4)$.		each INCORRECT response, draw or describe what figure
	I(4, 0) and $M(9, -4)$.		2 would look like.
	$\frac{1}{6}$ P		
	-4		
	+2		Figure 1 Figure 2
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		
			a) The transformation is a 90° rotation.
			b) The transformation is a reflection.
	-8-		c) The transformation is a translation.
34	Draw the image of ΔVWX after the translation	40	A figure has vertices at $A(-4, 2), B(6, 8), \& C(8, 2)$. After a
<u> </u>	$(x, y) \rightarrow (x + 2, y - 3).$	<u> </u>	transformation, the image of the figure has vertices at $A'(2, 3)$
	$(x, y) \neq (x + 2, y - 3).$		4), $B'(8, -6)$, & $C'(2, -8)$. Identify the transformation.
	$1 \rightarrow 1 \rightarrow$		
	• • • • · · / · · · · · · · · · · · · ·		$\begin{array}{c c} A & 2 & C \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ -10 \cdot 8 \cdot 6 \cdot 4 \cdot 2_2 & 2 & 4 & 6 & 8 & 10 \end{array}$
	$-7 W \xrightarrow{2} X + 7$		-10 - 8 - 6 - 4 - 2 - 1 + 4 + 7 + 10 + 10 + 10 + 10 + 10 + 10 + 10
	4 -5		a) The transformation is a 90° rotation.
			d) The transformation is a translation.

Name: _____ Per: _____

41	The lengths of two sides of a triangle are 5 inches and 11 inches. Find the range of possible lengths for the third side, s .	44	What makes a triangle <i>similar</i> ? Are all obtuse triangles <i>similar</i> ? Are all acute triangles <i>similar</i> ? Are all isosceles triangles <i>similar</i> ?
42	The diagonal of a square is 8 inches. How long is one side?	45	Find the length of the line segment with endpoints $(-2, 5)$ and $(1, 11)$. Write your answer in the simplest radical form.
43	 The sum of the exterior angles of a polygon is two times the sum of the interior angles. What type of polygon is it? a) Triangle b) Quadrilateral c) Pentagon d) Hexagon e) Decagon 	46	A sewing club is making a quilt consisting of 25 squares with each side of the square measuring 30 centimeters. If the quilt has 5 rows and 5 columns, what is the perimeter of the quilt?

	The Properties You Need to Know for the l	Final
Angle Addition Postulate	Definition of Supplementary Angles	Reflexive Property of Equality
Corresponding Angles Postulate	Linear Pair Theorem	Subtraction Property of Equality
Definition of Complementary Angles	Perpendicular Transversal Theorem	Transitive Property of Equality
Definition of Congruence	Segment Addition Postulate	Vertical Angles Theorem
	Substitution Property of Equality	

 47
 Fill in the blank to complete the two-column proof.

 Given: [2] and [2] are complementary. $[m \angle 2 = 42^{\circ}]$

 Prove: $[m \angle 1 = 48^{\circ}]$ Proof:

 Reasons

 1. [2] and [2] are complementary.
 1. Given

 2. $[m \angle 2 = 42^{\circ}]$ 2. Given

 3. $[m \angle 1 + m \angle 2 = 90^{\circ}]$ 3. [?]

 4. $42^{\circ} + [m \angle 2 = 90^{\circ}]$ 4. Substitution Property

 5. $[m \angle 2 = 48^{\circ}]$ 5. Subtraction Property of Equality.

4	48	a) Explain and dra	w an example of the Perpendicular Transversal Theorem
		b) If 2 intersecting	lines form a linear pair of congruent angles, then how many degrees must those two angles be?

Complete the proof by supplying the missing reas	on.
Given that $m \angle CBE = m \angle FBD$, prove $m \angle CBD = m$	$n \angle FBE$.
D E	
C B F	
$m \angle CBE = m \angle FBD$	Given information
$m \angle CBE = m \angle CBD + m \angle EBD$	Angle Addition Postulate
$m \angle FBD = m \angle FBE + m \angle EBD$	[?]
$m \angle CBD + m \angle EBD = m \angle FBE + m \angle EBD$	Substitution Property of Equality
$m \angle CBD = m \angle FBE$	Subtraction Property of Equality.
Given: $m \angle 2 + m \angle 3 + m \angle 4 = 180^{\circ}$ Prove: $m \angle 1 = m \angle 3 + m \angle 4$	
-	
Prove: $m \angle 1 = m \angle 3 + m \angle 4$ 1 / 2 / 3 / 4 Complete the proof. Proof: Statements	Reasons
Prove: $m \angle 1 = m \angle 3 + m \angle 4$	Reasons 1. Given
Prove: $m \angle 1 = m \angle 3 + m \angle 4$ 1 / 2 / 3 / 4 Complete the proof. Proof: Statements	
Prove: $m \angle 1 = m \angle 3 + m \angle 4$	1. Given
Prove: $m \angle 1 = m \angle 3 + m \angle 4$	1. Given 2. Subtraction Property of Equality