\qquad
IM2 Semester 1 Final Exam Review C
(Study Guide Questions 10-12, 34-36 \& 52-54)

Matching Graphs to Equations

To identify equations in vertex form (problems 10-12):

Identify the vertex on the graph.
The vertex is the point (h, k) and is located where the graph turns.
Plug the vertex point (h, k) into vertex form: $y=(x-h)^{2}+k$.
Remember to switch the sign of h, but keep the sign of k.
For example: If the vertex is $(-9,7)$, then the equation is $y=(x+9)^{2}+7$.
If $h=0$, then the equation will look like: $y=x^{2}+k$.
If $k=0$, then the equation will look like: $y=(x-h)^{2}$.

a. $\quad y=(x+3)^{2}$
b. $y=x^{2}+3$
c. $y=(x-3)^{2}$
d. $y=x^{2}-3$
3. Which equation corresponds to the graph shown?

a. $y=(x+5)^{2}$
b. $y=(x-5)^{2}$
c. $y=x^{2}+5$
d. $y=x^{2}-5$
5. Which equation corresponds to the graph shown?

a. $\quad y=-(x+2)^{2}$
b. $y=-(x-2)^{2}$
c. $y=-x^{2}+2$
d. $y=-x^{2}-2$
7. Which equation corresponds to the graph shown?

a. $\quad y=(x+5)^{2}$
b. $y=(x-5)^{2}$
c. $y=x^{2}+5$
d. $y=x^{2}-5$
2. Which equation corresponds to the graph shown?

a. $\quad y=(x+3)^{2}$
b. $y=x^{2}+3$
c. $y=(x-3)^{2}$
d. $y=x^{2}-3$
4. Which equation corresponds to the graph shown?

a. $\quad y=(x+5)^{2}$
b. $y=(x-5)^{2}$
c. $y=x^{2}+5$
d. $y=x^{2}-5$
6. Which equation corresponds to the graph shown?

a. $\quad y=(x+2)^{2}$
b. $y=(x-2)^{2}$
c. $y=x^{2}+2$
d. $y=x^{2}-2$
8. Which equation corresponds to the graph shown?

a. $\quad y=-(x+1)^{2}+5$
b. $y=-(x-1)^{2}+5$
c. $y=-(x+1)^{2}-5$
d. $\quad y=-(x-1)^{2}-5$
\qquad
To identify equations in factored form (problems 34-36):
Identify the roots on the graph.
The roots are where the parabola crosses the x-axis (the flat axis).
Plug the roots $\left(r_{1}, 0\right) \&\left(r_{2}, 0\right)$ into factored form: $y=\left(x-r_{1}\right)\left(x-r_{2}\right)$.
Remember to switch the signs for both roots.
For example: If the roots are $(-9,0) \&(7,0)$, then the equation is $y=(x \boxed{+9})(x \boxed{-7})$.
If $r_{1}=0$, then the equation will look like: $y=(x)\left(x-r_{2}\right)$.
If there is only one root (the vertex is on the x-axis), then use that root twice: $y=\left(x-r_{1}\right)\left(x-r_{1}\right)$.

11. Which polynomial does the graph represent?

a. $\quad y=(x+3)(x+5)$
b. $\quad y=(x-3)(x+5)$
c. $y=(x+3)(x-5)$
d. $y=(x-3)(x-5)$
13. Which polynomial does the graph represent?

a. $y=(x+1)(x+1)$
b. $y=(x)(x+1)$
c. $y=(x+1)(x-1)$
d. $y=(x)(x-1)$
10. Which polynomial does the graph represent?

a. $\quad y=(x+1)(x+3)$
b. $y=(x+1)(x-3)$
c. $y=(x-1)(x+3)$
d. $\quad y=(x-1)(x-3)$

 a. $\quad y=(x+3)(x+5)$ b. $\quad y=(x-3)(x+5)$ c. $y=(x+3)(x-5)$ d. $y=(x-3)(x-5)$	 a. $\quad y=(x+3)(x+3)$ b. $\quad y=(x-3)(x-3)$ c. $\quad y=(x)(x+3)$ d. $y=(x)(x-3)$
13. Which polynomial does the graph represent? a. $\quad y=(x+1)(x+1)$ b. $y=(x)(x+1)$ c. $y=(x+1)(x-1)$ d. $y=(x)(x-1)$	14. Which polynomial does the graph represent? a. $\quad y=(x-2)(x-5)$ b. $\quad y=(x+2)(x+5)$ c. $y=(x-2)(x+5)$ d. $y=(x+2)(x-5)$
15. Which polynomial does the graph represent? a. $\quad y=(x-4)(x+6)$ b. $\quad y=(x+4)(x-6)$ c. $y=(x-4)(x-6)$ d. $y=(x+4)(x+6)$	16. Which polynomial does the graph represent? a. $\quad y=(x)(x-4)$ b. $y=(x)(x+4)$ c. $y=(x-2)(x-4)$ d. $y=(x+2)(x+4)$

\qquad
To identify piecewise graphs (problems 52-54):
A piecewise graph with two equations will have 4 points.
The four x-values are written on the right in inequalities.
Plug each x-value into the left-side equation on the same line to find its y-value.
If the left-side equation is just a number, then that is your y-value. You don't have to plug anything in.
The points will be either open or closed, depending on the symbol that is next to the x-value.

$$
y= \begin{cases}\text { plug } x^{\prime} \text { s in here to get } y, & 1 \text { st point's } x \ll \text { or } \leq x \mid<\circ \text { or } \leq \cdot 2 \text { nd point's } x \\ \text { plug } x^{\prime} \text { s in here to get } y, & 3 \text { rd point's } x \ll \text { or } \leq x \ll \circ \text { or } \leq \cdot 4 \text { th point's } x\end{cases}
$$

The 2 points from each line are connected to each other, but not connected to the other line's points.
17. The cost, y, in dollars, of renting a car for x days is shown using the function below.
$y=\left\{\begin{array}{lc}50, & 0<x \leq 5 \\ 12 x, & 5<x \leq 8\end{array}\right.$
Which of the following graphs models the cost of renting a car?
A.

B.

C.

18. The cost, y, in dollars, of renting a car for x days is shown using the function below.
$y=\left\{\begin{array}{cc}50, & 0 \leq x<5 \\ 12 x, & 5 \leq x<8\end{array}\right.$
Which of the following graphs models the cost of renting a car?
A.

B.

C.

19. The cost, y, in dollars, of using a recording studio for x hours is shown using the function below.
$y= \begin{cases}100, & 0 \leq x<6 \\ 25 x, & 6 \leq x \leq 9\end{cases}$
Which of the following graphs models the cost of using the studio?
A.

250年
B.

C.

20. The cost, y, in dollars, of using a recording studio for x hours is shown using the function below.
$y= \begin{cases}100, & 0 \leq x<6 \\ 25 x, & 6 \leq x<9\end{cases}$
Which of the following graphs models the cost of using the studio?
A.

B.

C.

\qquad
21. The cost, y, in dollars, of hosting a group party for x people at a laser tag arena is shown using the function below. $y= \begin{cases}5 x, & 1 \leq x \leq 5 \\ 25, & 5 \leq x \leq 10\end{cases}$
Which of the following graphs models the cost of a party at this laser tag arena?
A.

B.

C.

22. The cost, y, in dollars, of hosting a group party for x people at a laser tag arena is shown using the function below. $y= \begin{cases}5 x, & 1 \leq x \leq 5 \\ 25, & 5 \leq x<10\end{cases}$
Which of the following graphs models the cost of a party at this laser tag arena?
A.

B.

C.

23. The cost, y, in dollars, of parking a car for x hours at a parking lot during the day is shown using the function below.
$y= \begin{cases}x, & 0<x \leq 6 \\ 9, & 6<x \leq 10\end{cases}$
Which of the following graphs models the cost of parking at this parking lot?
A.

B.

C.

24. The cost, y, in dollars, of parking a car for x hours at a parking lot during the day is shown using the function below.
$y= \begin{cases}x, & 0 \leq x<6 \\ 9, & 6 \leq x<10\end{cases}$
Which of the following graphs models the cost of parking at this parking lot?
A.

B.

C.

Answers

1. C	$2 . \mathrm{A}$	$3 . \mathrm{B}$	$4 . \mathrm{C}$	$5 . \mathrm{C}$	$6 . \mathrm{D}$	7. C	8. B
$9 . \mathrm{A}$	$10 . \mathrm{C}$	$11 . \mathrm{A}$	$12 . \mathrm{A}$	$13 . \mathrm{C}$	$14 . \mathrm{D}$	$15 . \mathrm{C}$	16. B
$17 . \mathrm{B}$	$18 . \mathrm{A}$	$19 . \mathrm{C}$	$20 . \mathrm{B}$	$21 . \mathrm{A}$	22. B	$23 . \mathrm{A}$	24. C

