\qquad
IM2 Semester 1 Final Exam Review E
(Study Guide Questions 4-6, 46-48 \& 61-63)

Determining Quadratic Solutions

To solve a quadratic using the quadratic formula when standard form is not equal to 0 (problems 46-48):
Start by putting it in standard form: move the number to the right of the equal sign by adding or subtracting.
You want the equation to look like this: $a x^{2}+b x+c=0$
Next, identify $a, b \& c$, and plug them into the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Simplify one piece at a time.
First, each small piece: $-b=?, b^{2}=?,-4(a)(c)=?, 2 a=$?
Second, what's under the root: $b^{2}-4 a c=$?
Third, the root: $\sqrt{b^{2}-4 a c}$
Fourth, add the top and subtract the top (there are two answers)
Fifth, divide each of your two possible numerators (fraction tops) by $2 a$.

1. Solve the quadratic equation by factoring, completing the square or by using the Quadratic Formula.
Round to the nearest tenth if
necessary. $8 x^{2}-38 x=10$
a. $\left\{5, \frac{1}{4}\right\}$
b. $\left\{-5, \frac{1}{4}\right\}$
c. $\left\{5,-\frac{1}{4}\right\}$
d. $\left\{-5,-\frac{1}{4}\right\}$
2. Solve the quadratic equation by factoring, completing the square or by using the Quadratic Formula.
Round to the nearest tenth if
necessary. $-4 x^{2}-19 x=-5$
a. $\left\{5, \frac{1}{4}\right\}$
b. $\left\{-5, \frac{1}{4}\right\}$
c. $\left\{5,-\frac{1}{4}\right\}$
d. $\left\{-5,-\frac{1}{4}\right\}$
3. Solve the quadratic equation by factoring, completing the square or by using the Quadratic Formula.
Round to the nearest tenth if
necessary. $12 x^{2}-63 x=-15$
a. $\left\{5, \frac{1}{4}\right\}$
b. $\left\{-5, \frac{1}{4}\right\}$
c. $\left\{5,-\frac{1}{4}\right\}$
d. $\left\{-5,-\frac{1}{4}\right\}$
4. Solve the quadratic equation by factoring, completing the square or by using the Quadratic Formula. Round to the nearest tenth if necessary. $5 x^{2}+14 x=-8$
a. $\left\{2, \frac{4}{5}\right\}$
b. $\left\{2,-\frac{4}{5}\right\}$
c. $\left\{-2, \frac{4}{5}\right\}$
d. $\left\{-2,-\frac{4}{5}\right\}$
5. Solve the quadratic equation by factoring, completing the square or by using the Quadratic Formula.
Round to the nearest tenth if
necessary. $10 x^{2}-28 x=-16$
a. $\left\{2, \frac{4}{5}\right\}$
b. $\left\{2,-\frac{4}{5}\right\}$
c. $\left\{-2, \frac{4}{5}\right\}$
d. $\left\{-2,-\frac{4}{5}\right\}$
6. Solve the quadratic equation by factoring, completing the square or by using the Quadratic Formula. Round to the nearest tenth if necessary. $-5 x^{2}-6 x=-8$
a. $\left\{2, \frac{4}{5}\right\}$
b. $\left\{2,-\frac{4}{5}\right\}$
c. $\left\{-2, \frac{4}{5}\right\}$
d. $\left\{-2,-\frac{4}{5}\right\}$
7. Solve the quadratic equation by factoring, completing the square or by using the Quadratic Formula.
Round to the nearest tenth if
necessary. $-3 x^{2}+16 x=-12$
a. $\left\{-6,-\frac{2}{3}\right\}$
b. $\left\{6, \frac{2}{3}\right\}$
c. $\left\{-6, \frac{2}{3}\right\}$
d. $\left\{6,-\frac{2}{3}\right\}$
8. Solve the quadratic equation by factoring, completing the square or by using the Quadratic Formula. Round to the nearest tenth if necessary. $6 x^{2}+40 x=-24$
a. $\left\{-6,-\frac{2}{3}\right\}$
b. $\left\{6, \frac{2}{3}\right\}$
c. $\left\{-6, \frac{2}{3}\right\}$
d. $\left\{6,-\frac{2}{3}\right\}$
9. Solve the quadratic equation by factoring, completing the square or by using the Quadratic Formula.
Round to the nearest tenth if necessary. $-9 x^{2}+60 x=36$
a. $\left\{-6,-\frac{2}{3}\right\}$
b. $\left\{6, \frac{2}{3}\right\}$
c. $\left\{-6, \frac{2}{3}\right\}$
d. $\left\{6,-\frac{2}{3}\right\}$

To solve a quadratic using the quadratic formula when standard form is equal to 0 (problems 46-48):
To start, identify $a, b \& c$, and plug them into the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Simplify one piece at a time.
First, each small piece: $-b=?, b^{2}=?,-4(a)(c)=?, 2 a=$?
Second, what's under the root: $b^{2}-4 a c=$?
Third, the root: $\sqrt{b^{2}-4 a c}$
Fourth, add the top and subtract the top (there are two answers)
Fifth, divide each of your two possible numerators (fraction tops) by $2 a$.
10. Use the quadratic formula to solve.

$$
x^{2}-6 x-7=0
$$

a. $\quad-1$ and 7
b. $-3 \pm 4 i$
c. $3 \pm 4 i$
d. 1 and -7
11. Use the quadratic formula to solve.

$$
x^{2}-6 x+25=0
$$

a. $\quad-1$ and 7
b. $-3 \pm 4 i$
c. $3 \pm 4 i$
d. 1 and -7
12. Use the quadratic formula to solve.

$$
x^{2}+10 x+29=0
$$

a. $5 \pm 2 i$
b. $-5 \pm 2 i$
c. $\quad-3$ and -7
d. 3 and 7

To determine quadratic solutions by completing the square (problems 61-63):
You can using the quadratic formula to solve, as in \#1-9 on this worksheet, but it is easier to complete the square.
Start by rewriting $x^{2}+b x=-c$ as $\left(x+\frac{b}{2}\right)^{2}=-c+\left(\frac{b}{2}\right)^{2}$
Divide the number in front of the x-term by 2. Write that number in squared parentheses on the left:

$$
(x \text { same sign number divided by } 2)^{2}=
$$

Whatever number you put on the left, square it and add that number to the number on the right.

$$
\begin{aligned}
\text { For example: } \left.\begin{array}{rl}
x^{2}-100 x & =8 \quad 100 \div 2=50 \&(50)^{2}=2500 \\
(x-50
\end{array}\right)^{2} & =8+5500
\end{aligned}
$$

Then simplify the right side.
Next, cancel the square ${ }^{2}{ }^{2}$) by putting $\pm \sqrt{ }$ on the right side (simplify the square root, if you can).
Next, move the number next to x by adding or subtracting it to both sides (put it in front of \pm).
19. Determine the solutions to the
equation (use the form $j \pm \sqrt{k}$, where
j and k are integers). j and k are integers).

$$
x^{2}-18 x=-8
$$

20. Determine the solutions to the equation (use the form $j \pm \sqrt{k}$, where j and k are integers).

$$
x^{2}-20 x=1
$$

23. Determine the solutions to the equation (use the form $j \pm \sqrt{k}$, where j and k are integers).

$$
x^{2}+2 x=46
$$

26. Determine the solutions to the equation (use the form $j \pm \sqrt{k}$, where j and k are integers).

$$
x^{2}-8 x=23
$$

21. Determine the solutions to the equation (use the form $j \pm \sqrt{k}$, where j and k are integers).

$$
x^{2}+8 x=3
$$

24. Determine the solutions to the equation (use the form $j \pm \sqrt{k}$, where j and k are integers).

$$
x^{2}+12 x=-5
$$

27. Determine the solutions to the equation (use the form $j \pm \sqrt{k}$, where j and k are integers).

$$
x^{2}+14 x=-8
$$

Answers

$1 . C$	$2 . B$	$3 . A$	4. D	5. A	$6 . C$
$7 . D$	$8 . A$	$9 . B$	$10 . A$	$11 . C$	$12 . B$
$13 . C$	$14 . B$	$15 . C$	$16 . A$	$17 . C$	$18 . B$
$19.9 \pm \sqrt{73}$	$20.10 \pm \sqrt{101}$	$21 .-4 \pm \sqrt{19}$	$22.3 \pm \sqrt{5}$	$23 .-1 \pm \sqrt{47}$	$24 .-6 \pm \sqrt{31}$
$25 .-5 \pm \sqrt{21}$	26. $4 \pm \sqrt{39}$	$27 .-7 \pm \sqrt{41}$			

