\qquad
Semester 2 Final Exam Study Guide
(Part 2)

	46. Find $(7 x-3)\left(2 x^{2}+8 x-5\right)$. A. $2 x^{2}+15 x-8$ B. $14 x^{3}+50 x^{2}-59 x+15$ C. $14 x^{3}+62 x^{2}-11 x+15$ D. $9 x^{3}+5 x-5$	47. Find $(8 x-1)\left(2 x^{2}+4 x+7\right)$. A. $16 x^{3}+30 x^{2}+52 x-7$ B. $16 x^{3}+34 x^{2}+60 x-7$ C. $10 x^{3}+12 x^{2}+6$ D. $2 x^{2}+12 x+6$	48. Find $\left(-4 x^{2}-x-8\right)(5 x+2)$. A. $-20 x^{2}-55 x-16$ B. $-4 x^{2}+4 x-6$ C. $-4 x^{2}+5 x-6$ D. $-20 x^{3}-13 x^{2}-42 x-16$
$\begin{aligned} & \frac{0}{\sqrt[0]{n}} \\ & \text { E } \\ & \text { E } \\ & \frac{0}{2} \end{aligned}$	49. Find $(4 m+7)-(2 m-3)$. A. $6 m+10$ B. $6 m+4$ C. $2 m+10$ D. $2 m+4$	$\text { 50. Find }(8 b-6)-(12 b+9)$ A. $-4 b-15$ B. $-4 b-3$ C. $20 b+3$ D. $-4 b+3$	51. Find $(k-4)-(3 k-7)$. A. $-2 k-11$ B. $-2 k+3$ C. $4 k-11$ D. $-2 k+11$
$\begin{aligned} & \frac{0}{\sqrt[0]{n}} \\ & \text { E } \\ & \frac{\pi}{2} \\ & \frac{2}{2} \end{aligned}$	52. Keith makes the claim that when the irrational number π is added to another number, n, the result is always an irrational number. Select a value for n that disproves this claim. A. 0 B. π C. 4 D. $-\pi$	53. Meredith makes the claim that when the irrational number $8 \sqrt{6}$ is added to another irrational number, n, the result is always an irrational number. Select a value for n that disproves this claim. A. $\sqrt{6}$ B. $-\sqrt{6}$ C. 0 D. $-8 \sqrt{6}$	54. Javier makes the claim that when the rational number - 17 is added to another number, n, the result is always a rational number. Select a value for n that disproves this claim. A. 17 B. 0 C. $\sqrt{2}$ D. $-\sqrt{4}$
	55. Solve the quadratic equation by factoring, completing the square or by using the quadratic formula. Round to the nearest tenth, if necessary. $-3 x^{2}-17 x-10=0$ A. $\{-2,5\}$ B. $\{-5,2\}$ C. $\{5,6.7\}$ D. $\{-6.7,-5\}$	56. Solve the quadratic equation by factoring, completing the square or by using the quadratic formula. Round to the nearest tenth, if necessary. $8 x^{2}-2 x-3=0$ A. $\left\{-\frac{1}{2}, \frac{3}{4}\right\}$ B. $\{-7.5,5.0\}$ C. $\left\{-\frac{3}{4}, \frac{1}{2}\right\}$ D. $\{-5.0,7.5\}$	57. Solve the quadratic equation by factoring, completing the square or by using the quadratic formula. Round to the nearest tenth, if necessary. $10 x^{2}+7 x-12=0$ A. $\{-0.8,1.5\}$ B. $\{-1.5,0.8\}$ C. $\{-3,4\}$ D. $\{-4,3\}$
	58. Solve the quadratic equation by factoring, completing the square, or by using the Quadratic Formula. Round to the nearest tenth, if necessary. $x^{2}-x-6=0$ A. $\{2,3\}$ B. $\{-3,2\}$ C. $\{-2,3\}$ D. $\{-3,-2\}$	59. Solve the quadratic equation by factoring, completing the square, or by using the Quadratic Formula. Round to the nearest tenth, if necessary. $x^{2}-13 x+36=0$ A. $\{4,9\}$ B. $\{-9,4\}$ C. $\{-4,9\}$ D. $\{-9,-4\}$	60. Solve the quadratic equation by factoring, completing the square, or by using the Quadratic Formula. Round to the nearest tenth, if necessary. $x^{2}+6 x+5=0$ A. $\{1,5\}$ B. $\{-5,1\}$ C. $\{-1,5\}$ D. $\{-5,-1\}$

第	61．What are the root（s）of the quadratic equation whose related function is graphed？Select all that apply． A．$(3,-1)$ B．$(0,2)$ C．$(-1,3)$ D．$(4,0)$ E．$(-4,0)$ F．$(-3,1)$ G．$(2,0)$	62．What are the root（s）of the quadratic equation whose related function is graphed？Select all that apply． A．$(-1,0)$ B．$(0,-3)$ C．$(1,-4)$ D．$(3,0)$ E．$(0,-1)$ F．$(-3,0)$ G．$(-4,1)$	63．What are the root（s）of the quadratic equation whose related function is graphed？Select all that apply． A．$(0,1)$ B．$(0,-1)$ C．$(-2,-3)$ D．$(2,-3)$ E．$(1,0)$ F．$(-1,0)$ G．$(2,3)$
第	64．Find the y－intercept of the graph $y=x^{2}+9 x+7$ A．$(0,7)$ B．$(0,-7)$ C．$(7,0)$ D．$(-7,0)$	65．Find the y－intercept of the graph $y=8 x^{2}-x-9$ ． A．$(9,0)$ B．$(0,9)$ C．$(-9,0)$ D．$(0,-9)$	66．Find the y－intercept of the graph $y=-2 x^{2}+5 x+10$ A．$(0,-10)$ B．$(0,10)$ C．$(10,0)$ D．$(-10,0)$
第	67．Morgan is kicking a ball into the air．The path of the ball can be modeled by a quadratic equation where the point $(2,4)$ represents the vertex and the x－axis represents the ground． Which equation（s）could represent the location of the ball when it hits the ground？Select all that apply． A． $0=-x^{2}-4 x$ B． $0=-x^{2}+4 x$ C． $0=-(x-2)^{2}+4$ D． $0=-(x+2)^{2}+4$ E． $0=-(x+2)(x+4)$ F． $0=-(x-0)(x-4)$	68．Donald is kicking a ball into the air．The path of the ball can be modeled by a quadratic equation where the point $(3,15)$ represents the vertex and the x－axis represents the ground． Which equation（s）could represent the location of the ball when it hits the ground？Select all that apply． A． $0=-(x+3)^{2}-15$ B． $0=-x^{2}+6 x+6$ C． $0=-(x+3)(x+15)$ D． $0=-x^{2}-6 x-6$ E． $0=-(x-3)^{2}+15$ F． $0=-(x-3)(x-15)$	69．Ruby is kicking a ball into the air． The path of the ball can be modeled by a quadratic equation where the point $(1,8)$ represents the vertex and the x－axis represents the ground． Which equation（s）could represent the location of the ball when it hits the ground？Select all that apply． A． $0=-(x-1)(x-8)$ B． $0=-(x+1)^{2}+8$ C． $0=-x^{2}+2 x+7$ D． $0=-(x-1)^{2}+8$ E． $0=-x^{2}-2 x-7$ F． $0=-(x+1)(x+8)$
第	70．Bobby hits a baseball up into the air from a height of 4 feet．The graph represents the height of the baseball above the ground，in feet，as a function of the horizontal distance the ball travels，in feet． Which of the following statements describe the path of the ball？Select two that apply． A．When the ball is at a horizontal distance of 2 ft it is falling． B．When the ball is at a horizontal distance of 2 ft it is rising． C．The ball lands on the ground 4 ft away from where it was hit． D．The ball lands more than 2 ft away from where it was hit．	71．Ashley hits a baseball up into the air from a height of 8 feet．The graph represents the height of the baseball above the ground，in feet，as a function of the horizontal distance the ball travels，in feet． Which of the following statements describe the path of the ball？Select two that apply． A．When the ball is at a horizontal distance of 6 ft ，it is rising． B．When the ball is at a horizontal distance of 2 ft ，it is rising． C．The ball lands on the ground 8 ft away from where it was hit． D．The ball lands less than 6 ft away from where it was hit．	72．Clark hits a baseball up into the air from a height of 4.5 feet．The graph represents the height of the baseball above the ground，in feet，as a function of the horizontal distance the ball travels，in feet． Which of the following statements describe the path of the ball？Select two that apply． A．When the ball is at a horizontal distance of 5 ft ，it is rising． B．When the ball is at a horizontal distance of 2 ft ，it is falling． C．The ball lands on the ground less than 10 ft away from where it was hit． D．The ball lands more than 6 ft away from where it was hit．

	73. Which of the following represents the graph of $f(x)=4(x+3)(x-2)$? A B C D	74. Which of the following represents the graph of $f(x)=-(x+2)(x+5)$? A B C D	75. Which of the following represents the graph of $f(x)=3(x-1)(x-2)$? A B C D
	76. What is the RANGE of $f(x)=-(x)^{2}+7$? A. all real numbers greater than or equal to 0 B. all real numbers less than or equal to 7 C. all real numbers $7 k$, where k is a non-positive integer D. all real numbers	77. What is the RANGE of $f(x)=(x+5)^{2}-6$? A. all real numbers $6 k$, where k is a non-negative integer B. all real numbers greater than or equal to - 6 C. all real numbers D. all real numbers greater than or equal to 5	78. What is the RANGE of $f(x)=-(x-1)^{2}-8$? A. all real numbers $-8 k$, where k is a non-positive integer B. all real numbers less than or equal to 1 C. all real numbers D. all real numbers less than or equal to -8

Name:

$\begin{aligned} & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	79. Scott found that the solutions to a quadratic equation were 19 and -15 . Which of the following descriptions of the quadratic equation are true? Select all that apply. A. The factors are $(x+19)$ and $(x-$ 15). B. The x-intercepts of the graph are 19 and -15 . C. The x-intercepts of the graph are -19 and 15. D. The equation is $f(x)=(x+$ 19) $(x-15)$. E. The factors are $(x-19)$ and $(x+$ 15). F. The equation is $f(x)=(x-$ 19) $(x+15)$.	80. Bianca found that the solutions to a quadratic equation were 10 and -6 . Which of the following descriptions of the quadratic equation are true? Select all that apply. A. The factors are $(x+10)$ and $(x-$ 6). B. The equation is $f(x)=(x-$ 10) $(x+6)$. C. The x-intercepts of the graph are 10 and -6 . D. The factors are $(x-10)$ and $(x+$ 6). E. The equation is $f(x)=(x+$ 10) $(x-6)$. F. The x-intercepts of the graph are -10 and 6.	81. Hayley found that the solutions to a quadratic equation were 5 and -11 . Which of the following descriptions of the quadratic equation are true? Select all that apply. A. The factors are $(x-5)$ and $(x+$ 11). B. The factors are $(x+5)$ and $(x-$ 11). C. The equation is $f(x)=(x+$ 5) $(x-11)$. D. The equation is $f(x)=(x-$ 5) $(x+11)$. E. The x-intercepts of the graph are 5 and -11 . F. The x-intercepts of the graph are -5 and 11.	
$\begin{aligned} & \text { 烒 } \\ & \frac{0}{0} \\ & \frac{\pi}{0} \end{aligned}$	82. Solve the equation using the quadratic formula (you must use the quadratic formula and show your work to get credit). $x^{2}-2 x-2=0$ \square	83. Solve the equation using the quadratic formula (you must use the quadratic formula and show your work to get credit). $x^{2}+12 x+28=0$	84. Solve the equation using the quadratic formula (you must use the quadratic formula and show your work to get credit). $x^{2}+4 x-3=0$	
	85. A ramp will be installed as modeled in the figure. If $\angle C$ measures x°, what is the measure of $\angle A$? \square	86. A ramp will be installed as modeled in the figure. If $\angle C$ measures x°, what is the measure of $\angle A$? \square	87. A ramp will be installed as modeled in the figure. If $\angle C$ measures x°, what is the measure of $\angle A$? \square	
Congruent Triangles \& Parallel Lines Cut by a Transversal	88. Given: $\overline{A C} \cong \overline{D F}, \overline{B C} \cong \overline{E F}, \overline{B C} \\| \overline{E F}, m \angle D F$ Prove: $\triangle A C B \cong \triangle D F E$ a. Reason \#2 is b. Reason \#3 is	$F E=90^{\circ}$ Reasons 1. Given 2. 3. \square		

Semester 2 Final Exam Study Guide (Part 1) Answers

46. B	47. A	48. D	49. C	50. A	51. B	52. D	53. D	54. C
55. D	56. A	57. B	58. C	59. A	60. D	61. D \& G	62. A \& D	63. E \& F
64. A	65. D	66. B	67. B, C \& F	68. B \& E	69. C \& D	70. A \& D	71. B \& C	72. C \& D
73. A	74. D	75. C	76. B	77. B	78. D	79. B, E \& F	80. B, C \& D	81. A, D \& E
82. $1 \pm \sqrt{3}$	$1+\sqrt{3} \& 1-\sqrt{3}$		83.$-6 \pm 2 \sqrt{2}$ or $-6+2 \sqrt{2} \&-6-2 \sqrt{2}$			84. $-2 \pm \sqrt{7}$	or $-2+\sqrt{7} \&-2-\sqrt{7}$	
$\begin{aligned} & 85 . \\ & (125-x)^{\circ} \end{aligned}$	$\begin{aligned} & 86 . \\ & (83-x)^{\circ} \end{aligned}$	$\begin{aligned} & 87 . \\ & (132-x)^{\circ} \end{aligned}$	88. a. Corresponding Angles Postulate; b. SAS		89. a. Alternate Interior Angles Theorem; b. AAS		90. a. Alternate Exterior Angles Theorem; b. HL	

