Name: _____

Semester 2 Final Review G Solving Inverse Trigonometric Ratios and Right Triangles

Example: A group of students were in a disagreeme solve for x in the figure. Which method(s all that apply. 10 20° x A. Use the Pythagorean theorem No: It uses all three side (2 with numbers, one with B. Use the Triangle Inequality theorem No: It compares side length to a which does not apply he	ent about how to are correct? <i>Select</i> s out). angle size, re.	 1. A group of students were in a disagreement about how to solve for <i>x</i> in the figure. Which method(s) are correct? <i>Select all that apply.</i> A. Use sin45 B. Use 30-60-90 triangles C. Use tan45 D. Use cos45 E. Use the Triangle Inequality theorem F. Use the Pythagorean theorem G. Use 45-45-90 triangles 		
 C. Ose tunzo No: It uses opposite and adj We have opposite and hypot D. Use 30 60 90 triangles No: We do not have a 30 or degree angle inside of the tr E. Use 45-45-90 triangles No: We do not have a 4 degree angle inside of the tr F. Use cos20 No: It uses adjacent and hypot G. Use sin20 YES!! It uses opposite and hypot of the 20 degree angle, which 	acent. tenuse. 5 iangle. 5 iangle. 5 iangle. tenuse. tenuse. tenuse. we have.			
 2. A group of students were in a disagreement about how to solve for x in the figure. Which method(s) are correct? Select all that apply. 8 60 x A. Use sin60 B. Use cos60 C. Use tan60 D. Use 30-60-90 triangles E. Use 45-45-90 triangles F. Use the Pythagorean theorem G. Use the Triangle Inequality theorem 	3. A group of studen disagreement about in the figure. Which correct? <i>Select all th</i> 3 A. Use the Pythagor B. Use the Triangle C. Use <i>tan</i> 40 D. Use 30-60-90 tria E. Use 45-45-90 tria F. Use <i>cos</i> 40 G. Use <i>sin</i> 40	nts were in a thow to solve for x method(s) are nat apply. $\frac{x}{5}$ rean theorem Inequality theorem angles angles	 4. A group of students were in a disagreement about how to solve for <i>x</i> in the figure. Which method(s) are correct? <i>Select all that apply</i>. 3 3 3 3 3 3 4. Use sin37 B. Use 30-60-90 triangles C. Use tan37 D. Use cos37 E. Use the Triangle Inequality theorem F. Use the Pythagorean theorem G. Use 45-45-90 triangles 	

		Name:			
Example:	9. Calculate	9. Calculate the measure of angle N in the triangle below. If			
Calculate the measure of angle G in the tr	iangle below. If necessary, r	necessary, round your answer to the nearest degree.			
necessary, round your answer to the near	rest degree. L	$L_{\scriptscriptstyle m A}$			
G	23	\wedge 23			
\land					
<i>w</i> ∠ \21	N/21 ^M	N/21			
	1 v 21	Nº 21			
$sinG = \frac{7}{2}$					
21					
$sin^{-1}\left(\frac{7}{m}\right) = m \angle G$					
	7 94)				
Forwards-functioning calculator: 2 nd sin (/ ÷21) =				
Backwards-functioning calculator: $(7 \div 2)$	$1) 2^{na} \sin =$				
$m \angle G = 19.47122 \dots$					
$m \angle G = 19^{\circ}$					
10. Calculate the measure of angle R in	11. Calculate the measure of angle	e S in 12. Calculate the measure of angle D in			
the triangle below. If necessary, round	the triangle below. If necessary, r	ound the triangle below. If necessary, round			
your answer to the nearest degree.	your answer to the nearest degre	e. your answer to the nearest degree.			
		-			
	9 1	10 C			
13/2>Q		B = 10			
$\frac{13}{R} \frac{20}{17}$	S = 14	$B \xrightarrow{10} C$			
$\begin{array}{c} 13/2 > Q \\ R & 17 \end{array}$	$s = \frac{9}{V} \frac{14}{V}$	$B \xrightarrow{10}{} C \xrightarrow{13}{} D$			
$\begin{array}{c} 13/2 \\ R \\ 17 \end{array}$	S = 14	$B \xrightarrow{10}{} C \xrightarrow{13}{} D$			
$\begin{array}{c} 13/2 \\ R \\ 17 \end{array}$	S = 14	$B \xrightarrow{10}{} C \xrightarrow{C} B \xrightarrow{D} D$			
13/2 Q R 17	$S = \frac{9}{V}$	$B \xrightarrow{10}{} C \xrightarrow{C} B \xrightarrow{D} D$			
$\frac{13}{R} \frac{2}{17} Q$	$S = \frac{9}{V}$	$B \xrightarrow{10}{13}_{D}$			
$\frac{13}{R} > Q$ R = 17	S = 14	$B \xrightarrow{10}{13} D$			
$\frac{13}{R} > Q$ R = 17	S = 14	$B \xrightarrow{10} C$ $B \xrightarrow{13} D$			
$\frac{13}{R} > Q$ R = 17	s 9 1 14 V	$B \xrightarrow{10}{13}_{D}$			
$\frac{13}{R} \frac{2}{17}$	s 9 1 14 V	$B \xrightarrow{10} C$ D D			
$\frac{13}{R} \frac{2}{17}$	S 9 14				
$\frac{13}{R} \frac{2}{17}$	S 9 14	$B \xrightarrow{10} C$ $B \xrightarrow{13} D$			
$\frac{13}{R} > Q$ R = 17					
$\frac{13}{R} > Q$ R = 17					
$\frac{13}{R} > Q$ R = 17	\$9114 V				
$\frac{13}{R} > Q$ R = 17	\$9114 V				
$\frac{13}{R} > Q$ R = 17	\$9114 V				
$\frac{13}{R} > Q$ R = 17					
$\frac{13}{R} > Q$ R = 17					
$\frac{13}{R} > Q$ R = 17					
$\frac{13}{R} > Q$ R = 17					
$\frac{13}{R} \frac{2}{17}$					

Semester 2 Final Review G Trigonometric Ratios and Right Triangles Answers:

<u>Solving inverse ringonometric Ratios and Right rinangles Answers:</u>								
1. A, D & G	2. B & D	3. A	4. C	5. 54°	6. 32°			
7. 40°	8. 36°	9. 48°	10. 40°	11. 57°	12. 38°			

Coluina

Semester 2 Final Review G – Solving Inverse Trigonometric Ratios and Right Triangles – Page 3 of 3