\qquad

Triangle Sum Theorem (Part 3)

Addition Property of Equality:
The resulting step after a number, variable or object is added to both sides of the equal sign.

Division Property of Equality:

The resulting step after a number, variable or object is divided from both sides of the equal sign.

For each triangle, determine the measure of the missing angle, showing and explaining every step of the solution. Write the angle measures in the provided table, in order from smallest to largest, identifying their opposite sides (use the other two letters), as well.

Example:
On $\triangle A B C, m \angle A=(x+8)^{\circ}, m \angle B=(3 x-4)^{\circ} \&$ $m \angle C=(x+16)^{\circ} . A B=18, B C=16 \& A C=25$. Fill in the table as accurately as possible.

Small
Medium
Large

Angles	Opposite Sides
$m \angle A=40^{\circ}$	$B C=16$
$m \angle C=48^{\circ}$	$A B=18$
$m \angle B=92^{\circ}$	$A C=25$

$\begin{gathered} m \angle A=(x+8)^{\circ}, m \angle B=(3 x-4)^{\circ} \& \\ m \angle C=(x+16)^{\circ} . \end{gathered}$			Given
$m \angle A+m \angle B+m \angle C=180$			\triangle Sum Thm
$(x+8)+(3 x-4)+(x+16)=180$			Subst.
$5 x+20=180$			Simp.
$-20-20$			
$5 x=160^{\circ}$			Subtr. Prop. =
$\div 5 \div 5$			
$x=32^{\circ}$			to divide a number from both sides of the equal sign.
$m \angle A=32+8$	$m \angle B=3(32)-4$	$m \angle C=32+16$	Use SUBSTITUTION to replace x with $\underline{\mathbf{3 2}}$ in each angle.
$m \angle A=40^{\circ}$	$m \angle B=92^{\circ}$	$m \angle C=48^{\circ}$	SIMPLIFY the right side of each equation.

1. On $\triangle D E F, m \angle D=(x+40)^{\circ}$,
$m \angle E=(4 x+86)^{\circ} \& m \angle F=(8 x+2)^{\circ} . D E=6$, $E F=7 \& D F=10$. Fill in the table as accurately as possible.

	Angles	
Small	$m \angle=$	
	$m=$	
	Medium	$m \angle=$
Large	$m \angle=$	

Reasons

Use the \qquad Property of \qquad to divide a number from both sides of the equal sign.
Use \qquad to replace x with \qquad in each angle. the right side of each equation.

Name:
2. On $\triangle G H I, m \angle G=(8 x)^{\circ}, m \angle H=(x+13)^{\circ} \& m \angle I=(2 x-9)^{\circ} . G H=6, H I=12 \& G I=7$. Fill in the table as accurately as possible.

Statements	Reasons	
		$\underline{\text { Div. Prop. }=}$
		$\underline{\text { Subst. }}$

		Angle
		Opp.Side

3. On $\triangle K L M, m \angle K=(4 x-15)^{\circ}, m \angle L=(2 x+11)^{\circ} \& m \angle M=(5 x+30)^{\circ} . K L=21, L M=14 \& K M=13$. Fill in the table as accurately as possible.

Statements	Reasons
	Reasons

		Angle
		Opp.Side

4. On $\triangle N P Q, m \angle N=(5 x-55)^{\circ}, m \angle P=(3 x-15)^{\circ} \& m \angle Q=(4 x+10)^{\circ} . N P=13, P Q=9 \& N Q=9$. Fill in the table as accurately as possible.

Statements	Reasons

		Angle
		Opp. Side

Name:
5. On $\triangle R S T, m \angle R=(3 x+50)^{\circ}, m \angle S=(20 x+8)^{\circ} \& m \angle T=(2 x-3)^{\circ} . R S=1, S T=11 \& R T=12$. Fill in the table as accurately as possible.

7. On $\triangle B C D, m \angle B=(4 x+44)^{\circ}, m \angle C=(2 x-6)^{\circ} \& m \angle D=(x+16)^{\circ} . B C=6, C D=9 \& B D=5$. Fill in the table as accurately as possible.

Name:
8. On $\triangle E F G, m \angle E=(5 x+49)^{\circ}, m \angle F=(4 x+46)^{\circ} \& m \angle G=(5 x+1)^{\circ} . E F=7, F G=13 \& E G=12$. Fill in the table as accurately as possible.

9. On $\triangle H J K, m \angle H=(42 x+4)^{\circ}, m \angle J=(5 x+10)^{\circ} \& m \angle K=(3 x+16)^{\circ} . H J=1, J K=2 \& H K=1$. Fill in the table as accurately as possible.
\qquad

10. On $\triangle L M N, m \angle L=(5 x-8)^{\circ}, m \angle M=(5 x+17)^{\circ} \& m \angle N=(2 x+15)^{\circ} . L M=3, M N=4 \& L N=5$. Fill in the table as accurately as possible.
\qquad

	Angle	Opp. Side
Sm		
Med		
Lg		

Triangle Sum Theorem Part 3 Answers

1.		2.		3.		4.	
$m \angle F=34^{\circ}$	DE= 6	$m \angle I=23^{\circ}$	$G H=6$	$m \angle L=39^{\circ}$	$K M=13$	$m \angle N=45^{\circ}$	$P Q=9$
$m \angle D=44^{\circ}$	$E F=7$	$m \angle H=29^{\circ}$	$H I=7$	$m \angle K=41^{\circ}$	$L M=14$	$m \angle P=45^{\circ}$	$N Q=9$
$m \angle E=102^{\circ}$	$D F=10$	$m \angle G=128^{\circ}$	$H I=12$	$m \angle M=100^{\circ}$	$K L=21$	$m \angle Q=90^{\circ}$	$N P=13$
5.		6.		7.		8.	
$m \angle T=7^{\circ}$	$R S=1$	$m \angle V=21^{\circ}$	$W Y=3$	$m \angle C=30^{\circ}$	$B D=5$	$m \angle G=31^{\circ}$	$E F=7$
$m \angle R=65^{\circ}$	$S T=11$	$m \angle Y=33^{\circ}$	$V W=5$	$m \angle D=34^{\circ}$	$B C=6$	$m \angle F=70^{\circ}$	$E G=12$
$m \angle S=108^{\circ}$	$R T=12$	$m \angle W=126^{\circ}$	$V Y=7$	$m \angle B=116^{\circ}$	$C D=9$	$m \angle E=79^{\circ}$	$F G=13$
9.				10.			
$m \angle J=25^{\circ}$	$H K=1$			$m \angle N=41^{\circ}$	$L M=3$		
$m \angle K=25^{\circ}$	$H J=1$			$m \angle L=57^{\circ}$	$M N=4$		
$m \angle H=130^{\circ}$	$J K=2$			$m \angle M=82^{\circ}$	$L N=5$		

