Using a Protractor to Determine Angle Relationships

Use a protractor to measure each of the angles shown below.

$$m\angle 2 = ___$$

$$m \angle 1 + m \angle 2 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

 $\angle 1 \& \angle 2$ are called a *linear pair*, because they are two attached angles that form a straight line.

$$m \angle 3 = \underline{\hspace{1cm}} m \angle 5 = \underline{\hspace{1cm}}$$

$$m \angle 3 + m \angle 4 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$m \angle 4 + m \angle 5 = ___ + ___ = ___$$

$$m \angle 5 + m \angle 4 = ___ + ___ = ___$$

$$m \angle 6 + m \angle 3 = _ + _ =$$

 $\angle 4 \& \angle 5$ are a *linear pair, because, together, they're a line*. What are the other 3 linear pairs?

 $\angle 3 \& \angle 5$ are called **vertical angles**, because they are across from each other over two crossed lines. So are $\angle 4 \& \angle 6$

3.

$$m \angle 8 = \underline{\hspace{1cm}} m \angle 10 = \underline{\hspace{1cm}}$$

$$m \angle 7 + m \angle 8 = ___ + ___ = ___$$

$$m \angle 8 + m \angle 10 = _ + _ = _$$

$$m \angle 10 + m \angle 9 = ___ + ___ = ___$$

$$m \angle 9 + m \angle 10 = ___ + ___ = ___$$

What are the 4 linear pairs? ∠____ & ∠___, ∠___ & ∠___, ∠___ & ∠___,

 $\angle 8 \& \angle 9$ are **vertical angles**, because they're across an X from each other. What is the other vertical angle pair? $\angle ___ \& \angle ___$

- 4. What do you notice about the angle measures of a linear pair?
- 5. The angle measures of vertical angles?

Name: ___

